organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-methyl-4-oxo-3-phenyl-2-propyl­amino-3,4-di­hydro­thieno[2,3-d]pyrimidine-6-carboxyl­ate

aInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and bClinical Laboratory, Zhushan Center for Disease Control and Prevention, Shiyan 442000, People's Republic of China
*Correspondence e-mail: jxu6686@yahoo.com.cn

(Received 14 August 2009; accepted 23 August 2009; online 29 August 2009)

The title compound, C19H21N3O3S, was synthesized via the aza-Wittig reaction of functionalized imino­phospho­rane with phenyl isocyanate under mild conditions. In the mol­ecule, the fused thienopyrimidine ring system is essentially planar, with a maximum deviation of 0.072 (2) Å, and makes a dihedral angle of 60.11 (9)° with the phenyl ring. An intra­molecular C—H⋯O hydrogen bond is present. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the preparation and biological and pharmaceutical activities of pyrimidinone derivatives, see: Modica et al. (2004[Modica, M., Romeo, G., Materia, L., Russo, F., Cagnotto, A., Mennini, T., Falkay, G. & George, F. (2004). Bioorg. Med. Chem. 12, 3891-3901.]); Panico et al. (2001[Panico, A., Cardile, V., Santagati, A. & Gentile, B. (2001). Farmaco, 56, 959-964.]). For the biological activity of thienopyrimidine derivatives, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]).

[Scheme 1]

Experimental

Crystal data
  • C19H21N3O3S

  • Mr = 371.45

  • Orthorhombic, P 21 21 21

  • a = 8.1682 (2) Å

  • b = 14.1247 (3) Å

  • c = 16.0672 (5) Å

  • V = 1853.73 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.980

  • 10064 measured reflections

  • 4472 independent reflections

  • 4226 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.136

  • S = 1.13

  • 4472 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1861 Freidel pairs

  • Flack parameter: 0.08 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.58 3.359 (3) 142
C2—H2⋯O2ii 0.93 2.50 3.432 (3) 177
N3—H3A⋯O1iii 0.88 (3) 2.08 (3) 2.863 (3) 147 (3)
C16—H16C⋯O2 0.96 2.31 3.000 (3) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The derivatives of thienopyrimidine are of great importance because of their remarked biological properties (Ding et al., 2004). We have recently focused on the synthesis of fused heterocyclic systems containing a fused pyrimidinone ring moiety using aza-Wittig reaction. The title compound, may be used as a new precursor for obtaining bioactive molecules and its structure is reported here, Fig.1. The bond lengths and angles are unexceptional. The thienopyrimidinone rings are closer to coplanarity with maximum deviations 0.072 (2)Å and -0.058 (2)Å for C10 and N1, respectively. The phenyl ring is twisted with respect to the pyrimidinone ring, with a dihedral angle of 60.11 (9)°. Intramolecular C—H···O and intermolecular C—H···O, N—H···O hydrogen bonds interactions are present, which stabilize the conformation of the molecule and the crystal structure (Table 1).

Related literature top

For the preparation and biological and pharmaceutical activities of pyrimidinone derivatives, see: Modica et al. (2004); Panico et al. (2001). For biological activity of thienopyrimidine derivatives, see: Ding et al. (2004).

Experimental top

To a solution of diethyl 5-((phenylimino)methyleneamino)- 3-methylthiophene-2,4-dicarboxylate(3 mmol) in anhydrous dichloromethane (15 ml) was added propan-1-amine (3 mmol). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 78%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, N—H = 0.88 Å, Uiso=1.2Ueq (N) for NH, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing and atom labelling scheme of the title compound with thermal ellipsoids drawn at the 50% probability level.
Ethyl 5-methyl-4-oxo-3-phenyl-2-propylamino-3,4- dihydrothieno[2,3-d]pyrimidine-6-carboxylate top
Crystal data top
C19H21N3O3SF(000) = 784
Mr = 371.45Dx = 1.331 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4659 reflections
a = 8.1682 (2) Åθ = 2.5–28.0°
b = 14.1247 (3) ŵ = 0.20 mm1
c = 16.0672 (5) ÅT = 298 K
V = 1853.73 (8) Å3Block, colourless
Z = 40.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4472 independent reflections
Radiation source: fine-focus sealed tube4226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 105
Tmin = 0.969, Tmax = 0.980k = 1818
10064 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1133P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4472 reflectionsΔρmax = 0.39 e Å3
241 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 1861 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (10)
Crystal data top
C19H21N3O3SV = 1853.73 (8) Å3
Mr = 371.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1682 (2) ŵ = 0.20 mm1
b = 14.1247 (3) ÅT = 298 K
c = 16.0672 (5) Å0.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
4472 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4226 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.031
10064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136Δρmax = 0.39 e Å3
S = 1.13Δρmin = 0.37 e Å3
4472 reflectionsAbsolute structure: Flack (1983), 1861 Freidel pairs
241 parametersAbsolute structure parameter: 0.08 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2534 (2)0.22884 (14)0.48554 (12)0.0322 (4)
C20.3341 (3)0.15050 (17)0.45355 (15)0.0412 (5)
H20.37940.10520.48870.049*
C30.3457 (3)0.14132 (19)0.36796 (15)0.0515 (6)
H30.40080.08950.34570.062*
C40.2783 (4)0.2063 (2)0.31554 (15)0.0545 (6)
H40.28640.19840.25820.065*
C50.1984 (3)0.28367 (18)0.34767 (15)0.0502 (6)
H50.15300.32830.31190.060*
C60.1848 (3)0.29565 (16)0.43303 (13)0.0388 (5)
H60.13040.34790.45470.047*
C70.3242 (3)0.32075 (14)0.61007 (13)0.0347 (4)
C80.3275 (3)0.32060 (16)0.69897 (13)0.0358 (4)
C90.2629 (3)0.24251 (15)0.74015 (12)0.0374 (4)
C100.1679 (2)0.17242 (14)0.62462 (12)0.0342 (4)
C110.3990 (3)0.38959 (15)0.75391 (13)0.0362 (4)
C120.3869 (3)0.36077 (15)0.83528 (14)0.0407 (5)
C130.0094 (3)0.03243 (17)0.62828 (15)0.0483 (6)
H13A0.11880.02600.60550.058*
H13B0.02010.04880.68670.058*
C140.0757 (4)0.0588 (2)0.6213 (2)0.0725 (9)
H14A0.01570.10560.65320.087*
H14B0.18340.05260.64620.087*
C150.0958 (7)0.0951 (3)0.5329 (3)0.1005 (15)
H15A0.00830.11610.51210.151*
H15B0.17160.14710.53250.151*
H15C0.13680.04520.49810.151*
C160.4758 (4)0.47961 (18)0.72536 (16)0.0507 (6)
H16A0.39200.52270.70750.076*
H16B0.54860.46670.67980.076*
H16C0.53630.50740.77040.076*
C170.4320 (3)0.41350 (18)0.91026 (15)0.0443 (5)
C180.4227 (5)0.4121 (2)1.05795 (16)0.0689 (9)
H18A0.36880.47331.05860.083*
H18B0.53910.42181.06620.083*
C190.3562 (5)0.3512 (3)1.12406 (18)0.0761 (9)
H19A0.24110.34191.11510.114*
H19B0.37310.38091.17710.114*
H19C0.41100.29111.12310.114*
N10.2447 (2)0.24077 (12)0.57496 (10)0.0340 (4)
N20.1836 (2)0.16896 (13)0.70577 (11)0.0393 (4)
N30.0749 (2)0.10894 (14)0.58518 (13)0.0422 (4)
H3A0.055 (3)0.121 (2)0.5323 (18)0.051*
O10.3846 (2)0.38072 (11)0.56420 (9)0.0453 (4)
O20.4921 (3)0.49108 (14)0.91163 (11)0.0578 (5)
O30.3935 (3)0.36454 (14)0.97886 (11)0.0609 (5)
S10.29211 (8)0.25028 (4)0.84614 (3)0.04848 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (9)0.0327 (10)0.0261 (9)0.0042 (7)0.0009 (7)0.0019 (7)
C20.0486 (12)0.0380 (12)0.0369 (11)0.0050 (9)0.0041 (9)0.0002 (9)
C30.0667 (15)0.0487 (14)0.0391 (12)0.0029 (11)0.0069 (11)0.0120 (10)
C40.0743 (17)0.0613 (16)0.0278 (10)0.0083 (14)0.0003 (11)0.0038 (10)
C50.0619 (13)0.0515 (13)0.0372 (11)0.0084 (11)0.0076 (11)0.0142 (11)
C60.0430 (11)0.0356 (11)0.0378 (11)0.0019 (9)0.0006 (9)0.0052 (8)
C70.0427 (11)0.0287 (9)0.0327 (10)0.0026 (8)0.0031 (8)0.0027 (8)
C80.0447 (11)0.0326 (10)0.0301 (10)0.0012 (9)0.0029 (8)0.0024 (8)
C90.0489 (11)0.0390 (11)0.0242 (8)0.0002 (10)0.0013 (8)0.0001 (8)
C100.0439 (11)0.0290 (10)0.0297 (10)0.0004 (8)0.0015 (8)0.0028 (8)
C110.0412 (10)0.0328 (10)0.0344 (11)0.0030 (8)0.0017 (8)0.0056 (8)
C120.0498 (11)0.0389 (11)0.0334 (11)0.0011 (9)0.0002 (9)0.0048 (9)
C130.0618 (14)0.0451 (13)0.0381 (12)0.0169 (11)0.0044 (11)0.0009 (10)
C140.079 (2)0.0551 (17)0.083 (2)0.0100 (15)0.0015 (17)0.0234 (16)
C150.139 (4)0.053 (2)0.109 (3)0.005 (2)0.043 (3)0.018 (2)
C160.0734 (17)0.0381 (12)0.0406 (13)0.0103 (11)0.0032 (11)0.0060 (10)
C170.0517 (12)0.0460 (13)0.0354 (11)0.0043 (10)0.0032 (10)0.0104 (10)
C180.104 (2)0.0697 (19)0.0329 (13)0.0100 (18)0.0062 (14)0.0123 (12)
C190.101 (2)0.086 (2)0.0413 (15)0.000 (2)0.0002 (16)0.0025 (15)
N10.0460 (8)0.0304 (8)0.0258 (8)0.0008 (7)0.0016 (6)0.0007 (6)
N20.0547 (11)0.0356 (9)0.0276 (8)0.0092 (8)0.0007 (8)0.0024 (7)
N30.0570 (11)0.0387 (10)0.0309 (9)0.0101 (8)0.0060 (8)0.0028 (8)
O10.0673 (10)0.0378 (9)0.0308 (8)0.0124 (8)0.0093 (7)0.0004 (6)
O20.0789 (12)0.0515 (11)0.0429 (10)0.0127 (9)0.0058 (9)0.0113 (8)
O30.0943 (14)0.0570 (11)0.0313 (9)0.0150 (10)0.0040 (9)0.0089 (8)
S10.0721 (4)0.0474 (3)0.0259 (2)0.0128 (3)0.0033 (2)0.0012 (2)
Geometric parameters (Å, º) top
C1—C61.384 (3)C12—S11.751 (2)
C1—C21.387 (3)C13—N31.456 (3)
C1—N11.448 (2)C13—C141.468 (4)
C2—C31.385 (3)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—C41.362 (4)C14—C151.519 (5)
C3—H30.9300C14—H14A0.9700
C4—C51.373 (4)C14—H14B0.9700
C4—H40.9300C15—H15A0.9600
C5—C61.386 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—H60.9300C16—H16A0.9600
C7—O11.226 (3)C16—H16B0.9600
C7—N11.420 (3)C16—H16C0.9600
C7—C81.429 (3)C17—O21.201 (3)
C8—C91.390 (3)C17—O31.339 (3)
C8—C111.439 (3)C18—O31.457 (3)
C9—N21.343 (3)C18—C191.471 (5)
C9—S11.723 (2)C18—H18A0.9700
C10—N21.311 (3)C18—H18B0.9700
C10—N31.335 (3)C19—H19A0.9600
C10—N11.401 (3)C19—H19B0.9600
C11—C121.373 (3)C19—H19C0.9600
C11—C161.490 (3)N3—H3A0.88 (3)
C12—C171.463 (3)
C6—C1—C2120.7 (2)C13—C14—C15114.8 (3)
C6—C1—N1120.37 (18)C13—C14—H14A108.6
C2—C1—N1118.93 (18)C15—C14—H14A108.6
C3—C2—C1118.4 (2)C13—C14—H14B108.6
C3—C2—H2120.8C15—C14—H14B108.6
C1—C2—H2120.8H14A—C14—H14B107.6
C4—C3—C2121.5 (2)C14—C15—H15A109.5
C4—C3—H3119.2C14—C15—H15B109.5
C2—C3—H3119.2H15A—C15—H15B109.5
C3—C4—C5119.7 (2)C14—C15—H15C109.5
C3—C4—H4120.1H15A—C15—H15C109.5
C5—C4—H4120.1H15B—C15—H15C109.5
C4—C5—C6120.5 (2)C11—C16—H16A109.5
C4—C5—H5119.8C11—C16—H16B109.5
C6—C5—H5119.8H16A—C16—H16B109.5
C1—C6—C5119.2 (2)C11—C16—H16C109.5
C1—C6—H6120.4H16A—C16—H16C109.5
C5—C6—H6120.4H16B—C16—H16C109.5
O1—C7—N1119.66 (19)O2—C17—O3123.5 (2)
O1—C7—C8126.5 (2)O2—C17—C12125.6 (2)
N1—C7—C8113.87 (18)O3—C17—C12110.8 (2)
C9—C8—C7118.0 (2)O3—C18—C19107.5 (3)
C9—C8—C11113.54 (18)O3—C18—H18A110.2
C7—C8—C11128.3 (2)C19—C18—H18A110.2
N2—C9—C8126.94 (19)O3—C18—H18B110.2
N2—C9—S1121.50 (16)C19—C18—H18B110.2
C8—C9—S1111.54 (16)H18A—C18—H18B108.5
N2—C10—N3120.16 (19)C18—C19—H19A109.5
N2—C10—N1123.25 (18)C18—C19—H19B109.5
N3—C10—N1116.58 (18)H19A—C19—H19B109.5
C12—C11—C8110.74 (19)C18—C19—H19C109.5
C12—C11—C16125.2 (2)H19A—C19—H19C109.5
C8—C11—C16124.04 (19)H19B—C19—H19C109.5
C11—C12—C17127.9 (2)C10—N1—C7121.80 (16)
C11—C12—S1113.03 (16)C10—N1—C1120.45 (16)
C17—C12—S1118.88 (17)C7—N1—C1117.67 (16)
N3—C13—C14113.0 (2)C10—N2—C9115.30 (18)
N3—C13—H13A109.0C10—N3—C13122.80 (19)
C14—C13—H13A109.0C10—N3—H3A115.4 (19)
N3—C13—H13B109.0C13—N3—H3A121.2 (19)
C14—C13—H13B109.0C17—O3—C18116.2 (2)
H13A—C13—H13B107.8C9—S1—C1291.12 (11)
C6—C1—C2—C30.6 (3)S1—C12—C17—O31.2 (3)
N1—C1—C2—C3178.1 (2)N2—C10—N1—C710.4 (3)
C1—C2—C3—C40.9 (4)N3—C10—N1—C7169.45 (18)
C2—C3—C4—C50.8 (4)N2—C10—N1—C1166.03 (19)
C3—C4—C5—C60.5 (4)N3—C10—N1—C114.1 (3)
C2—C1—C6—C50.3 (3)O1—C7—N1—C10177.29 (19)
N1—C1—C6—C5178.4 (2)C8—C7—N1—C104.1 (3)
C4—C5—C6—C10.2 (4)O1—C7—N1—C16.2 (3)
O1—C7—C8—C9175.2 (2)C8—C7—N1—C1172.42 (17)
N1—C7—C8—C93.3 (3)C6—C1—N1—C10120.7 (2)
O1—C7—C8—C110.8 (4)C2—C1—N1—C1060.5 (3)
N1—C7—C8—C11179.28 (19)C6—C1—N1—C762.7 (3)
C7—C8—C9—N26.1 (3)C2—C1—N1—C7116.0 (2)
C11—C8—C9—N2177.4 (2)N3—C10—N2—C9172.1 (2)
C7—C8—C9—S1175.14 (16)N1—C10—N2—C97.7 (3)
C11—C8—C9—S11.4 (2)C8—C9—N2—C100.5 (3)
C9—C8—C11—C120.4 (3)S1—C9—N2—C10179.13 (17)
C7—C8—C11—C12175.7 (2)N2—C10—N3—C131.6 (3)
C9—C8—C11—C16179.8 (2)N1—C10—N3—C13178.5 (2)
C7—C8—C11—C164.1 (4)C14—C13—N3—C10100.7 (3)
C8—C11—C12—C17174.6 (2)O2—C17—O3—C182.3 (4)
C16—C11—C12—C175.6 (4)C12—C17—O3—C18176.2 (3)
C8—C11—C12—S10.8 (2)C19—C18—O3—C17173.9 (3)
C16—C11—C12—S1179.1 (2)N2—C9—S1—C12177.32 (19)
N3—C13—C14—C1560.7 (4)C8—C9—S1—C121.53 (17)
C11—C12—C17—O22.1 (4)C11—C12—S1—C91.33 (19)
S1—C12—C17—O2177.2 (2)C17—C12—S1—C9174.47 (19)
C11—C12—C17—O3176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.359 (3)142
C2—H2···O2ii0.932.503.432 (3)177
N3—H3A···O1iii0.88 (3)2.08 (3)2.863 (3)147 (3)
C16—H16C···O20.962.313.000 (3)128
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H21N3O3S
Mr371.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.1682 (2), 14.1247 (3), 16.0672 (5)
V3)1853.73 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10064, 4472, 4226
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.136, 1.13
No. of reflections4472
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.37
Absolute structureFlack (1983), 1861 Freidel pairs
Absolute structure parameter0.08 (10)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.583.359 (3)141.7
C2—H2···O2ii0.932.503.432 (3)176.7
N3—H3A···O1iii0.88 (3)2.08 (3)2.863 (3)147 (3)
C16—H16C···O20.962.313.000 (3)128.3
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D20092406) and the Science Research Project of Yunyang Medical College (No. 2007QDJ14).

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationModica, M., Romeo, G., Materia, L., Russo, F., Cagnotto, A., Mennini, T., Falkay, G. & George, F. (2004). Bioorg. Med. Chem. 12, 3891–3901.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPanico, A., Cardile, V., Santagati, A. & Gentile, B. (2001). Farmaco, 56, 959–964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds