organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2264-o2265

DL-Asparaginium perchlorate

aLaboratoire de Chimie Moléculaire, du Contrôle, de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Cristallographie et Modélisation, des Matériaux Minéraux et Biologiques, (LCM3B), Université Henri Poincaré Nancy I, UPRESA CNRS 7036, BP 239, 54506, Vandoeuvre les Nancy, France
*Correspondence e-mail: lamiabendjeddou@yahoo.fr

(Received 14 August 2009; accepted 22 August 2009; online 29 August 2009)

Two enantiomeric counterparts (L- and D-asparginium cations related by glide planes) are present in the structure of the title compound, C4H9N2O3+·ClO4, with a 1:1 cation–anion ratio. The structure is built up from asparginium cations and perchlorate anions. In the crystal, mol­ecules assemble in double layers parallel to (100) through N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. In the asparginium layers, hydrogen bonds generate alternating R22(8) and R43(18) graph-set motifs. Further hydrogen bonds involving the anions and cations result in the formation of a three-dimensional network.

Related literature

For the use of DL-asparagine in growth-media for bacteria, see: Gerhardt & Wilson (1948[Gerhardt, P. & Wilson, J. B. (1948). J. Bacteriol. 56, 17-24.]); Palleroni et al. (1973[Palleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. (1973). Int. J. Syst. Bacteriol. 23, 333-339.]); van Wagtendonk et al. (1963[Wagtendonk, W. J. van, Clark, J. A. D. & Godoy, G. A. (1963). Proc. Natl. Acad. Sci. USA, 50, 835-838.]). For related structures, see: Aarthy et al. (2005[Aarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042-o2044.]); Anitha et al. (2005[Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463-o1465.]); Bendjeddou et al. (2009[Bendjeddou, L., Cherouana, A., Hadjadj, N., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o1770-o1771.]); Verbist et al. (1972[Verbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Acta Cryst. B28, 3006-3013.]); Wang et al. (1985[Wang, J. L., Berkovitch-Yellin, Z. & Leiserowitz, L. (1985). Acta Cryst. B41, 341-348.]); Yamada et al. (2007[Yamada, K., Hashizume, D., Shimizu, T. & Yokoyama, S. (2007). Acta Cryst. E63, o3802-o3803.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H9N2O3+·ClO4

  • Mr = 232.58

  • Orthorhombic, P b c a

  • a = 9.861 (5) Å

  • b = 10.289 (4) Å

  • c = 16.700 (5) Å

  • V = 1694.4 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 100 K

  • 0.09 × 0.04 × 0.02 mm

Data collection
  • Oxford Diffraction Xcalibur Saphire2 CCD diffractometer

  • Absorption correction: none

  • 45509 measured reflections

  • 2818 independent reflections

  • 2205 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.100

  • S = 1.12

  • 2818 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.76 2.5485 (19) 161
N1—H1A⋯O4ii 0.89 2.02 2.837 (2) 152
N1—H1B⋯O5iii 0.89 2.03 2.910 (2) 171
N1—H1C⋯O3 0.89 2.30 2.886 (2) 123
N1—H1C⋯O5 0.89 2.16 2.907 (2) 142
N2—H4N⋯O2iv 0.84 2.54 3.341 (2) 159
N2—H5N⋯O2v 0.84 2.57 3.362 (2) 157
N2—H5N⋯O5v 0.84 2.55 3.089 (2) 123
C2—H2⋯O7vi 0.98 2.44 3.201 (2) 134
C3—H3A⋯O4ii 0.97 2.58 3.326 (2) 134
C3—H3B⋯O2v 0.97 2.41 3.253 (2) 145
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PARST97 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The asparagine is one of twenty natural amino acids the most common land. DL-asparagine has been used in growth-media for bacteria-growth such as Brucellae (Gerhardt & Wilson, 1948), Pseudomonas fluorescens (Palleroni et al., 1973) and lambda particles (Wagtendonk et al., 1963).

The crystal structure of L-asparagine (Yamada et al., 2007), L-asparagine monohydrate, (Verbist et al., 1972), L-asparagine-L-aspartic acid monohydrate (Wang et al., 1985), L-asparaginium nitrate (Aarthy et al., 2005) and L-asparaginium picrate (Anitha et al., 2005) have been solved. In this paper, the crystal structure information of DL-asparaginium perchlorate at 100 K was undertaken.

The asymmetric unit of (I) (Fig. 1) is formed by a monoprotonated asparaginium cation and a perchlorate anion. A proton transfer from the perchloric acid to atom N(1) of aspargine resulted in the formation of salts. This protonation lead to the different C—O bond distances [1.2179 (18)Å and 1.3086 (18) Å] and bond angle [126.42 (13)°] of the carboxyl group. This type of protonation is observed in various aspargine acid complexes (Anitha et al., 2005; Aarthy, et al., 2005).

The average Cl—O bond distances and O—Cl—O bond angles of the perchlorate anion are 1.4434%A and 109.47 °, respectively, confirming a tetrahedral configuration, similar to other perchlorate studied at low temperature (Bendjeddou et al., 2009).

In (I), the ions are connected via N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1) into three-dimensional hydrogen bonded double layers which run parallel to the (100) plane (Fig. 2). All ammonium H atoms are involved in hydrogen bonds, with three different perchlorate ions, while two anions accepts one hydrogen bond. These Two interactions link the anions and cations in to zigzag infinite chains along the [010] direction, which can be described by the graph-set motif C22(6) (Bernstein et al., 1995) (Fig. 3). The third anion participate in two centred hydrogen bonds with O(5) atom to form a finite chaine D(4). An intramolecular hydrogen bond is also observed between the α -amino group and the γ-carbonyl group with the graph-set motif S(6) (Fig. 4).

The carboxylic acid H and carbonyl O atoms participates respectively with a neighbouring cation through an O—H···O and N—H···O hydrogen bond. The combination of these hydrogen bonds generates an alternating noncentrosymmetric rings in two-dimensional network which can be described by the graph-set motif R22(8) and R43(18) (Fig. 5).

The junction between the cationic entities is consolidated by three weaks independent C—H···O hydrogen bonds via the perchlorate anions, forming an R88(32) and R44(14) centrosymmetric Rings in two-dimensional network (Fig. 6).

Related literature top

DL-asparagine has been used in growth-media for bacteria, see: Gerhardt & Wilson (1948); Palleroni et al. (1973); van Wagtendonk et al. (1963). For related structures, see: Aarthy et al. (2005); Anitha et al. (2005); Bendjeddou et al. (2009); Verbist et al. (1972); Wang et al. (1985); Yamada et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The monocrystals of the compound DL-asparaginium perchlorate are obtained by slow evaporation at room temperature of an aqueous solution containing DL-asparagine monohydrate and the perchloric acid in a 1:1 stochiometric ratio. The solution was maintained in 293 K under agitation during twenty minutes.

Refinement top

H atoms were positioned geometrically and refined in the riding-model approximation, with C—H = 0.98 Å (methine) or 0.97 Å (methylene), N—H = 0.89 Å (ammonium) or 0.84 Å (amine), O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of of DL-asparaginium perchlorate, showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for the title compound, viewed down the a axis, showing the double layers. Dashed lines indicate N—H···O, O—H···O and C—H···O hydrogen bonds
[Figure 3] Fig. 3. Part of the crystal structure, showing the aggregation of C22(6) motif via N—H···O hydrogen bonds. Atoms marked with a hash symbol (#), dollar sign ($), a percent sign (%), or a star (*) are at the symmetry positions (1 - x, 1 - y, 1 - z), (1/2 + x,1/2 - y, 1 - z), (1.5 - x, 1/2 + y, z), (1.5 - x, -1/2 + y, z) respectively.
[Figure 4] Fig. 4. Part of the crystal structure, showing the formation of a finite chaine D(4) and S(6) rings. Atoms marked with an hash symbol (#), are at the symmetry position (x, 1.5 - y,-1/2 + z).
[Figure 5] Fig. 5. Part of the crystal structure, showing the formation of R22(8) and R43(18) rings. Atoms marked with an ampersand (&), a hash symbol (#), dollar sign ($), or a star (*) are at the symmetry positions (1 - x, 1/2 + y, 1.5 - z), (1 - x, -1/2 + y, 1.5 - z), (-1/2 + x, y, 1.5 - z), (1/2 + x, y, 1.5 - z), respectively.
[Figure 6] Fig. 6. Part of the crystal structure, showing the formation of R88(32) rings. Atoms marked with a star (*), dollar sign ($), an ampersand (&), a hash symbol (#) are at the symmetry positions (1/2 + x, 1/2 - y, 1 - z), (1.5 - x, 1/2 + y, z), (-1/2 + x, y, 1.5 - z), (1/2 + x, y, 1.5 - z) respectively.
DL-Asparaginium perchlorate top
Crystal data top
C4H9N2O3+·ClO4F(000) = 960
Mr = 232.58Dx = 1.823 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2818 reflections
a = 9.861 (5) Åθ = 3.1–31.5°
b = 10.289 (4) ŵ = 0.47 mm1
c = 16.700 (5) ÅT = 100 K
V = 1694.4 (12) Å3Needle, colourless
Z = 80.09 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Saphire2 CCD
diffractometer
2205 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 31.5°, θmin = 3.1°
ϕ and ω scansh = 1414
45509 measured reflectionsk = 1511
2818 independent reflectionsl = 2424
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.6998P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.68 e Å3
2818 reflectionsΔρmin = 0.38 e Å3
127 parameters
Crystal data top
C4H9N2O3+·ClO4V = 1694.4 (12) Å3
Mr = 232.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.861 (5) ŵ = 0.47 mm1
b = 10.289 (4) ÅT = 100 K
c = 16.700 (5) Å0.09 × 0.04 × 0.02 mm
Data collection top
Oxford Diffraction Xcalibur Saphire2 CCD
diffractometer
2205 reflections with I > 2σ(I)
45509 measured reflectionsRint = 0.033
2818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.100H-atom parameters constrained
S = 1.12Δρmax = 0.68 e Å3
2818 reflectionsΔρmin = 0.38 e Å3
127 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58079 (10)0.69351 (10)0.73615 (6)0.0162 (3)
O20.45528 (9)0.59815 (10)0.63971 (6)0.0139 (3)
O30.61640 (11)0.32442 (10)0.70705 (6)0.0158 (3)
N10.67333 (11)0.48834 (11)0.57093 (6)0.0115 (3)
N20.71473 (14)0.37342 (13)0.82581 (7)0.0204 (4)
C10.56293 (14)0.62144 (13)0.67245 (8)0.0117 (3)
C20.69857 (13)0.56919 (13)0.64328 (8)0.0111 (3)
C30.77716 (13)0.49753 (13)0.70849 (8)0.0126 (3)
C40.69625 (14)0.39103 (13)0.74834 (8)0.0127 (3)
Cl0.47309 (3)0.19831 (3)0.51836 (2)0.0127 (1)
O40.40552 (10)0.17287 (10)0.44286 (6)0.0158 (3)
O50.43440 (10)0.32809 (10)0.54535 (6)0.0145 (3)
O60.43348 (15)0.10450 (12)0.57652 (7)0.0315 (4)
O70.61761 (11)0.19650 (11)0.50614 (7)0.0226 (3)
H10.507330.721200.751580.0243*
H1A0.751640.456810.552900.0172*
H1B0.634990.536940.533100.0172*
H1C0.618280.422910.583500.0172*
H20.753520.643820.626630.0133*
H3A0.858260.460000.685130.0151*
H3B0.805480.559640.748870.0151*
H4N0.674370.310630.847370.0246*
H5N0.775230.418070.848130.0246*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0144 (5)0.0187 (5)0.0156 (5)0.0014 (4)0.0022 (4)0.0059 (4)
O20.0116 (4)0.0155 (5)0.0146 (5)0.0008 (3)0.0014 (3)0.0001 (4)
O30.0162 (5)0.0177 (5)0.0135 (4)0.0048 (4)0.0012 (4)0.0035 (4)
N10.0113 (5)0.0127 (5)0.0104 (5)0.0015 (4)0.0010 (4)0.0002 (4)
N20.0253 (7)0.0250 (7)0.0110 (5)0.0020 (5)0.0013 (4)0.0023 (5)
C10.0134 (6)0.0092 (5)0.0125 (6)0.0007 (4)0.0028 (4)0.0024 (5)
C20.0104 (5)0.0108 (5)0.0120 (5)0.0010 (4)0.0013 (4)0.0014 (4)
C30.0102 (5)0.0141 (6)0.0135 (6)0.0005 (4)0.0017 (4)0.0010 (5)
C40.0128 (5)0.0133 (6)0.0119 (6)0.0045 (5)0.0010 (4)0.0002 (5)
Cl0.0164 (2)0.0106 (2)0.0112 (2)0.0003 (1)0.0021 (1)0.0004 (1)
O40.0155 (5)0.0178 (5)0.0142 (5)0.0034 (4)0.0043 (4)0.0027 (4)
O50.0165 (5)0.0125 (5)0.0145 (5)0.0006 (3)0.0008 (4)0.0023 (4)
O60.0588 (9)0.0177 (5)0.0179 (6)0.0056 (5)0.0043 (5)0.0082 (4)
O70.0145 (5)0.0267 (6)0.0265 (6)0.0061 (4)0.0080 (4)0.0079 (4)
Geometric parameters (Å, º) top
Cl—O51.4601 (13)N1—H1C0.8900
Cl—O61.4239 (15)N1—H1B0.8900
Cl—O41.4499 (13)N2—H4N0.8400
Cl—O71.4398 (13)N2—H5N0.8400
O1—C11.3086 (18)C1—C21.522 (2)
O2—C11.2179 (18)C2—C31.527 (2)
O3—C41.2511 (18)C3—C41.510 (2)
O1—H10.8200C2—H20.9800
N1—C21.4879 (19)C3—H3A0.9700
N2—C41.3190 (19)C3—H3B0.9700
N1—H1A0.8900
O5—Cl—O6109.74 (7)O1—C1—C2110.01 (11)
O5—Cl—O7108.32 (6)O1—C1—O2126.42 (13)
O6—Cl—O7111.07 (8)N1—C2—C3113.22 (11)
O4—Cl—O5108.27 (6)N1—C2—C1108.09 (10)
O4—Cl—O6110.17 (7)C1—C2—C3112.86 (11)
O4—Cl—O7109.23 (6)C2—C3—C4113.37 (11)
C1—O1—H1109.00N2—C4—C3117.32 (12)
C2—N1—H1A109.00O3—C4—N2123.53 (13)
C2—N1—H1B109.00O3—C4—C3119.16 (12)
H1B—N1—H1C109.00N1—C2—H2107.00
H1A—N1—H1C109.00C1—C2—H2107.00
C2—N1—H1C109.00C3—C2—H2107.00
H1A—N1—H1B109.00H3A—C3—H3B108.00
C4—N2—H5N117.00C2—C3—H3A109.00
H4N—N2—H5N125.00C2—C3—H3B109.00
C4—N2—H4N117.00C4—C3—H3A109.00
O2—C1—C2123.57 (12)C4—C3—H3B109.00
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.82001.76002.5485 (19)161.00
N1—H1A···O4ii0.89002.02002.837 (2)152.00
N1—H1B···O5iii0.89002.03002.910 (2)171.00
N1—H1C···O30.89002.30002.886 (2)123.00
N1—H1C···O50.89002.16002.907 (2)142.00
N2—H4N···O2iv0.84002.54003.341 (2)159.00
N2—H5N···O2v0.84002.57003.362 (2)157.00
N2—H5N···O5v0.84002.55003.089 (2)123.00
C2—H2···O7vi0.98002.44003.201 (2)134.00
C3—H3A···O4ii0.97002.58003.326 (2)134.00
C3—H3B···O2v0.97002.41003.253 (2)145.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x+1/2, y, z+3/2; (vi) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC4H9N2O3+·ClO4
Mr232.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)9.861 (5), 10.289 (4), 16.700 (5)
V3)1694.4 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.09 × 0.04 × 0.02
Data collection
DiffractometerOxford Diffraction Xcalibur Saphire2 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
45509, 2818, 2205
Rint0.033
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.100, 1.12
No. of reflections2818
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.82001.76002.5485 (19)161.00
N1—H1A···O4ii0.89002.02002.837 (2)152.00
N1—H1B···O5iii0.89002.03002.910 (2)171.00
N1—H1C···O30.89002.30002.886 (2)123.00
N1—H1C···O50.89002.16002.907 (2)142.00
N2—H4N···O2iv0.84002.54003.341 (2)159.00
N2—H5N···O2v0.84002.57003.362 (2)157.00
N2—H5N···O5v0.84002.55003.089 (2)123.00
C2—H2···O7vi0.98002.44003.201 (2)134.00
C3—H3A···O4ii0.97002.58003.326 (2)134.00
C3—H3B···O2v0.97002.41003.253 (2)145.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x+1/2, y, z+3/2; (vi) x+3/2, y+1/2, z.
 

Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1 is gratefully acknowledged.

References

First citationAarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463–o1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBendjeddou, L., Cherouana, A., Hadjadj, N., Dahaoui, S. & Lecomte, C. (2009). Acta Cryst. E65, o1770–o1771.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGerhardt, P. & Wilson, J. B. (1948). J. Bacteriol. 56, 17–24.  PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationPalleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. (1973). Int. J. Syst. Bacteriol. 23, 333–339.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Acta Cryst. B28, 3006–3013.  CSD CrossRef IUCr Journals Google Scholar
First citationWagtendonk, W. J. van, Clark, J. A. D. & Godoy, G. A. (1963). Proc. Natl. Acad. Sci. USA, 50, 835–838.  CrossRef PubMed Google Scholar
First citationWang, J. L., Berkovitch-Yellin, Z. & Leiserowitz, L. (1985). Acta Cryst. B41, 341–348.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamada, K., Hashizume, D., Shimizu, T. & Yokoyama, S. (2007). Acta Cryst. E63, o3802–o3803.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2264-o2265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds