organic compounds
Adeninium cytosinium sulfate
aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: c_aouatef@yahoo.fr
In the title compound, C5H6N5+·C4H6N3O+·SO42−, the adeninium (AdH+) and cytosinium (CytH+) cations and sulfate dianion are involved in a three-dimensional hydrogen-bonding network with four different modes, viz. AdH+⋯AdH+, AdH+⋯CytH+, AdH+⋯SO42− and CytH+⋯SO42−. The adeninium cations form N—H⋯N dimers through the Hoogsteen faces, generating a characteristic R22(10) motif. This AdH+⋯AdH+ hydrogen bond in combination with AdH+⋯CytH+ H-bonds leads to two-dimensional cationic ribbons parallel to the a axis. The sulfate anions interlink the ribbons into a three-dimensional hydrogen-bonding network and thus reinforce the crystal structure.
Related literature
Nucleobases possess multiple hydrogen-bonding sites (Saenger, 1984) and so can form an abundance of aggregates through hydrogen bonds, from dimers to infinite extended species, see: Jai-nhuknan et al. (1997); Bendjeddou et al. (2003); Smith et al. (2005); Sridhar & Ravikumar (2007). For protonated nucleobases in acid-base catalysis, see: Lippert (2005). For their use in the construction of highly ordered supramolecular nanostructures which are of interest for their potential applications as molecular devices, see: Lehn (1995); Gottarelli et al. (2000). Bond lengths in adeninium cations are dependent on the degree of protonation, see: Hingerty et al. (1981); Langer & Huml (1978). For bond angles in neutral adenine, see: Voet & Rich (1970). For related structures with a cytosinium cation, see: Prabakaran et al. (2001); Smith et al. (2005); Sridhar & Ravikumar (2008). For graph-set motifs, see: Bernstein et al. (1995). For hydrogen bond ing, see: Jeffrey & Saenger (1991). For pKa values for cytosine, see: Stecher (1968).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809034023/at2867sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809034023/at2867Isup2.hkl
Colourless needle crystals of the title compound [AdH+, CytH+, SO42-], were obtained by slow evaporation at room temperature of an equimolar solution of adenine, cytosine and sulfuric acid.
All the H atoms were located in the difference electron density maps. All the H atoms attached to C were treated as riding with C—H = 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(C). The coordinate parameters of the H atoms attached to N were freely refined with Uiso(H) = 1.2Ueq(N).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level | |
Fig. 2. The cation-cation (AdH+···AdH+ and AdH+···CytH+) hydrogen bonds. | |
Fig. 3. Hydrogen bonding cationic two-dimensional ribbons. The axis a is directed downwards from the projection plane. |
C5H6N5+·C4H6N3O+·SO42− | F(000) = 712 |
Mr = 344.33 | Dx = 1.721 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 57856 reflections |
a = 9.180 (2) Å | θ = 3.1–35.0° |
b = 12.948 (3) Å | µ = 0.29 mm−1 |
c = 11.328 (3) Å | T = 100 K |
β = 99.356 (2)° | Prism, colourless |
V = 1328.6 (5) Å3 | 0.39 × 0.26 × 0.12 mm |
Z = 4 |
Oxford Diffraction Xcalibur Saphire2 CCD diffractometer | 5843 independent reflections |
Radiation source: fine-focus sealed tube | 5061 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 35.0°, θmin = 3.1° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | h = −14→14 |
Tmin = 0.921, Tmax = 0.975 | k = −20→20 |
57856 measured reflections | l = −17→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0602P)2 + 0.1819P] where P = (Fo2 + 2Fc2)/3 |
5843 reflections | (Δ/σ)max = 0.001 |
232 parameters | Δρmax = 0.51 e Å−3 |
8 restraints | Δρmin = −0.51 e Å−3 |
C5H6N5+·C4H6N3O+·SO42− | V = 1328.6 (5) Å3 |
Mr = 344.33 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.180 (2) Å | µ = 0.29 mm−1 |
b = 12.948 (3) Å | T = 100 K |
c = 11.328 (3) Å | 0.39 × 0.26 × 0.12 mm |
β = 99.356 (2)° |
Oxford Diffraction Xcalibur Saphire2 CCD diffractometer | 5843 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | 5061 reflections with I > 2σ(I) |
Tmin = 0.921, Tmax = 0.975 | Rint = 0.026 |
57856 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 8 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.51 e Å−3 |
5843 reflections | Δρmin = −0.51 e Å−3 |
232 parameters |
Experimental. CrysAlis RED (Oxford Diffraction, 2008) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1A | 0.89503 (7) | 0.08114 (5) | 0.15030 (6) | 0.0102 (1) | |
N2A | 0.93054 (8) | −0.04224 (5) | 0.30191 (6) | 0.0114 (2) | |
N3A | 0.92695 (7) | 0.26232 (5) | 0.17622 (6) | 0.0113 (2) | |
N7A | 1.01108 (7) | 0.14551 (5) | 0.46688 (6) | 0.0097 (1) | |
N9A | 1.00189 (7) | 0.30483 (5) | 0.38697 (6) | 0.0106 (2) | |
C2A | 0.89521 (8) | 0.18034 (6) | 0.10957 (7) | 0.0113 (2) | |
C4A | 0.96300 (8) | 0.23844 (5) | 0.29397 (6) | 0.0091 (2) | |
C5A | 0.96826 (7) | 0.14027 (5) | 0.34460 (6) | 0.0083 (2) | |
C6A | 0.93243 (7) | 0.05505 (5) | 0.26787 (6) | 0.0087 (1) | |
C8A | 1.02951 (8) | 0.24570 (5) | 0.48772 (7) | 0.0106 (2) | |
O5C | 0.58498 (6) | 0.24982 (4) | 0.27802 (5) | 0.0133 (2) | |
N1C | 0.59982 (7) | 0.08175 (5) | 0.33878 (6) | 0.0100 (1) | |
N2C | 0.76585 (7) | 0.18374 (5) | 0.67114 (6) | 0.0107 (2) | |
N3C | 0.67261 (7) | 0.21469 (5) | 0.47342 (6) | 0.0092 (1) | |
C2C | 0.61681 (8) | 0.18570 (5) | 0.35794 (7) | 0.0093 (2) | |
C4C | 0.71397 (7) | 0.14707 (5) | 0.56532 (7) | 0.0085 (2) | |
C5C | 0.69956 (8) | 0.03932 (5) | 0.54009 (7) | 0.0100 (2) | |
C6C | 0.64100 (8) | 0.01083 (5) | 0.42725 (7) | 0.0102 (2) | |
S1 | 0.27538 (2) | 0.03329 (1) | 0.11795 (2) | 0.0083 (1) | |
O1 | 0.19268 (7) | −0.06314 (4) | 0.12530 (5) | 0.0137 (2) | |
O2 | 0.24941 (6) | 0.10652 (4) | 0.21156 (5) | 0.0119 (1) | |
O3 | 0.43624 (6) | 0.01038 (4) | 0.13141 (5) | 0.0122 (1) | |
O4 | 0.22552 (6) | 0.07936 (4) | −0.00242 (5) | 0.0115 (1) | |
H1A | 0.8721 (13) | 0.0315 (8) | 0.0979 (9) | 0.0123* | |
H2A | 0.87069 | 0.19049 | 0.02747 | 0.0135* | |
H3A | 0.9548 (13) | −0.0569 (10) | 0.3778 (8) | 0.0136* | |
H4A | 0.9167 (13) | −0.0894 (8) | 0.2481 (9) | 0.0136* | |
H8A | 1.05853 | 0.27310 | 0.56380 | 0.0127* | |
H9A | 1.0154 (13) | 0.3714 (6) | 0.3849 (11) | 0.0127* | |
H1C | 0.5516 (12) | 0.0640 (9) | 0.2698 (8) | 0.0120* | |
H2C | 0.7866 (13) | 0.1437 (9) | 0.7326 (9) | 0.0129* | |
H3C | 0.6899 (12) | 0.2814 (6) | 0.4829 (10) | 0.0111* | |
H4C | 0.7671 (12) | 0.2495 (6) | 0.6843 (10) | 0.0129* | |
H5C | 0.72934 | −0.00972 | 0.59907 | 0.0120* | |
H6C | 0.62847 | −0.05905 | 0.40948 | 0.0122* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1A | 0.0133 (2) | 0.0090 (2) | 0.0078 (3) | −0.0006 (2) | −0.0001 (2) | −0.0007 (2) |
N2A | 0.0175 (3) | 0.0066 (2) | 0.0096 (3) | −0.0002 (2) | 0.0010 (2) | −0.0009 (2) |
N3A | 0.0146 (3) | 0.0097 (2) | 0.0088 (3) | −0.0012 (2) | −0.0001 (2) | 0.0010 (2) |
N7A | 0.0122 (2) | 0.0085 (2) | 0.0080 (3) | −0.0007 (2) | 0.0007 (2) | −0.0006 (2) |
N9A | 0.0145 (3) | 0.0070 (2) | 0.0098 (3) | −0.0019 (2) | 0.0008 (2) | −0.0005 (2) |
C2A | 0.0141 (3) | 0.0104 (3) | 0.0087 (3) | −0.0007 (2) | −0.0002 (2) | 0.0012 (2) |
C4A | 0.0107 (3) | 0.0076 (3) | 0.0089 (3) | −0.0010 (2) | 0.0009 (2) | −0.0001 (2) |
C5A | 0.0101 (3) | 0.0070 (2) | 0.0077 (3) | −0.0005 (2) | 0.0010 (2) | −0.0002 (2) |
C6A | 0.0097 (2) | 0.0080 (2) | 0.0082 (3) | 0.0002 (2) | 0.0010 (2) | −0.0002 (2) |
C8A | 0.0133 (3) | 0.0093 (3) | 0.0089 (3) | −0.0015 (2) | 0.0006 (2) | −0.0006 (2) |
O5C | 0.0198 (3) | 0.0095 (2) | 0.0093 (3) | 0.0003 (2) | −0.0017 (2) | 0.0021 (2) |
N1C | 0.0126 (2) | 0.0077 (2) | 0.0088 (3) | −0.0007 (2) | −0.0013 (2) | −0.0008 (2) |
N2C | 0.0144 (3) | 0.0091 (2) | 0.0079 (3) | −0.0005 (2) | −0.0006 (2) | 0.0002 (2) |
N3C | 0.0127 (2) | 0.0064 (2) | 0.0078 (3) | −0.0001 (2) | −0.0007 (2) | 0.0001 (2) |
C2C | 0.0103 (3) | 0.0081 (3) | 0.0089 (3) | −0.0001 (2) | 0.0002 (2) | −0.0002 (2) |
C4C | 0.0089 (2) | 0.0082 (3) | 0.0084 (3) | 0.0000 (2) | 0.0011 (2) | 0.0009 (2) |
C5C | 0.0116 (3) | 0.0072 (3) | 0.0106 (3) | −0.0002 (2) | 0.0004 (2) | 0.0009 (2) |
C6C | 0.0113 (3) | 0.0075 (3) | 0.0116 (3) | −0.0007 (2) | 0.0013 (2) | 0.0003 (2) |
S1 | 0.0115 (1) | 0.0059 (1) | 0.0067 (1) | 0.0002 (1) | −0.0008 (1) | 0.0003 (1) |
O1 | 0.0199 (3) | 0.0090 (2) | 0.0111 (3) | −0.0048 (2) | −0.0008 (2) | 0.0018 (2) |
O2 | 0.0167 (2) | 0.0094 (2) | 0.0097 (3) | 0.0013 (2) | 0.0025 (2) | −0.0014 (2) |
O3 | 0.0123 (2) | 0.0111 (2) | 0.0122 (3) | 0.0025 (2) | −0.0013 (2) | −0.0024 (2) |
O4 | 0.0174 (2) | 0.0083 (2) | 0.0076 (2) | 0.0005 (2) | −0.0016 (2) | 0.0019 (2) |
S1—O1 | 1.4706 (10) | N1C—C6C | 1.3665 (12) |
S1—O2 | 1.4706 (10) | N1C—C2C | 1.3682 (12) |
S1—O3 | 1.4895 (10) | N2C—C4C | 1.3052 (12) |
S1—O4 | 1.4905 (10) | N3C—C4C | 1.3660 (12) |
O5C—C2C | 1.2281 (11) | N3C—C2C | 1.3772 (13) |
N1A—C2A | 1.3649 (13) | N1C—H1C | 0.864 (9) |
N1A—C6A | 1.3628 (12) | N2C—H4C | 0.864 (8) |
N2A—C6A | 1.3184 (12) | N2C—H2C | 0.864 (11) |
N3A—C2A | 1.3077 (12) | N3C—H3C | 0.882 (8) |
N3A—C4A | 1.3568 (12) | C4A—C5A | 1.3921 (12) |
N7A—C8A | 1.3245 (12) | C5A—C6A | 1.4101 (12) |
N7A—C5A | 1.3787 (12) | C2A—H2A | 0.9300 |
N9A—C4A | 1.3616 (12) | C8A—H8A | 0.9300 |
N9A—C8A | 1.3634 (12) | C4C—C5C | 1.4260 (12) |
N1A—H1A | 0.877 (10) | C5C—C6C | 1.3548 (13) |
N2A—H4A | 0.858 (10) | C5C—H5C | 0.9300 |
N2A—H3A | 0.873 (9) | C6C—H6C | 0.9300 |
N9A—H9A | 0.872 (8) | ||
O1—S1—O4 | 107.88 (3) | N3A—C4A—C5A | 126.85 (6) |
O1—S1—O2 | 111.16 (3) | N3A—C4A—N9A | 127.46 (6) |
O1—S1—O3 | 109.72 (3) | N9A—C4A—C5A | 105.70 (6) |
O3—S1—O4 | 108.98 (3) | N7A—C5A—C4A | 110.74 (6) |
O2—S1—O3 | 109.20 (3) | N7A—C5A—C6A | 131.12 (6) |
O2—S1—O4 | 109.87 (3) | C4A—C5A—C6A | 118.14 (6) |
C2A—N1A—C6A | 123.35 (6) | N1A—C6A—N2A | 120.63 (6) |
C2A—N3A—C4A | 112.24 (6) | N2A—C6A—C5A | 125.47 (6) |
C5A—N7A—C8A | 103.57 (6) | N1A—C6A—C5A | 113.89 (6) |
C4A—N9A—C8A | 106.43 (6) | N7A—C8A—N9A | 113.57 (7) |
C2A—N1A—H1A | 118.3 (7) | N3A—C2A—H2A | 117.00 |
C6A—N1A—H1A | 118.3 (7) | N1A—C2A—H2A | 117.00 |
H3A—N2A—H4A | 122.0 (11) | N7A—C8A—H8A | 123.00 |
C6A—N2A—H3A | 118.8 (8) | N9A—C8A—H8A | 123.00 |
C6A—N2A—H4A | 118.7 (7) | O5C—C2C—N3C | 121.54 (6) |
C4A—N9A—H9A | 128.6 (8) | O5C—C2C—N1C | 122.74 (7) |
C8A—N9A—H9A | 124.7 (8) | N1C—C2C—N3C | 115.72 (6) |
C2C—N1C—C6C | 122.27 (7) | N2C—C4C—N3C | 118.78 (6) |
C2C—N3C—C4C | 124.30 (6) | N2C—C4C—C5C | 123.24 (7) |
C6C—N1C—H1C | 121.6 (8) | N3C—C4C—C5C | 117.98 (7) |
C2C—N1C—H1C | 115.7 (8) | C4C—C5C—C6C | 117.72 (7) |
C4C—N2C—H2C | 121.4 (7) | N1C—C6C—C5C | 121.94 (6) |
H2C—N2C—H4C | 117.2 (10) | C4C—C5C—H5C | 121.00 |
C4C—N2C—H4C | 120.6 (7) | C6C—C5C—H5C | 121.00 |
C2C—N3C—H3C | 114.5 (7) | C5C—C6C—H6C | 119.00 |
C4C—N3C—H3C | 120.9 (7) | N1C—C6C—H6C | 119.00 |
N1A—C2A—N3A | 125.53 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1i | 0.877 (10) | 2.535 (10) | 3.1036 (19) | 123.3 (8) |
N1A—H1A···O4i | 0.877 (10) | 1.928 (11) | 2.7833 (17) | 164.5 (11) |
N1C—H1C···O3 | 0.864 (9) | 1.877 (10) | 2.7350 (17) | 172.0 (11) |
N2C—H2C···O1ii | 0.864 (11) | 1.902 (11) | 2.7596 (17) | 171.8 (11) |
N2A—H3A···N7Aiii | 0.873 (9) | 2.081 (10) | 2.9118 (18) | 158.7 (12) |
N3C—H3C···O4iv | 0.882 (8) | 1.835 (8) | 2.7164 (17) | 178.2 (11) |
N2A—H4A···O5Cv | 0.858 (10) | 2.102 (10) | 2.8368 (18) | 143.3 (9) |
N2C—H4C···O2iv | 0.864 (8) | 1.901 (8) | 2.7622 (17) | 174.4 (11) |
N9A—H9A···O3vi | 0.872 (8) | 1.870 (8) | 2.7364 (17) | 172.5 (12) |
C2A—H2A···O1i | 0.9300 | 2.3900 | 3.0553 (19) | 128.00 |
C5C—H5C···O2ii | 0.9300 | 2.4600 | 3.357 (2) | 161.00 |
C6C—H6C···N3Av | 0.9300 | 2.5300 | 3.447 (2) | 170.00 |
C8A—H8A···O5Civ | 0.9300 | 2.4200 | 3.245 (2) | 148.00 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+2, −y, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6N5+·C4H6N3O+·SO42− |
Mr | 344.33 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 9.180 (2), 12.948 (3), 11.328 (3) |
β (°) | 99.356 (2) |
V (Å3) | 1328.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.39 × 0.26 × 0.12 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Saphire2 CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.921, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 57856, 5843, 5061 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.088, 1.04 |
No. of reflections | 5843 |
No. of parameters | 232 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.51 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1i | 0.877 (10) | 2.535 (10) | 3.1036 (19) | 123.3 (8) |
N1A—H1A···O4i | 0.877 (10) | 1.928 (11) | 2.7833 (17) | 164.5 (11) |
N1C—H1C···O3 | 0.864 (9) | 1.877 (10) | 2.7350 (17) | 172.0 (11) |
N2C—H2C···O1ii | 0.864 (11) | 1.902 (11) | 2.7596 (17) | 171.8 (11) |
N2A—H3A···N7Aiii | 0.873 (9) | 2.081 (10) | 2.9118 (18) | 158.7 (12) |
N3C—H3C···O4iv | 0.882 (8) | 1.835 (8) | 2.7164 (17) | 178.2 (11) |
N2A—H4A···O5Cv | 0.858 (10) | 2.102 (10) | 2.8368 (18) | 143.3 (9) |
N2C—H4C···O2iv | 0.864 (8) | 1.901 (8) | 2.7622 (17) | 174.4 (11) |
N9A—H9A···O3vi | 0.872 (8) | 1.870 (8) | 2.7364 (17) | 172.5 (12) |
C2A—H2A···O1i | 0.9300 | 2.3900 | 3.0553 (19) | 128.00 |
C5C—H5C···O2ii | 0.9300 | 2.4600 | 3.357 (2) | 161.00 |
C6C—H6C···N3Av | 0.9300 | 2.5300 | 3.447 (2) | 170.00 |
C8A—H8A···O5Civ | 0.9300 | 2.4200 | 3.245 (2) | 148.00 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y, −z+1; (iii) −x+2, −y, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, o649–o651. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gottarelli, G., Masiero, S., Mezzina, E., Pieraccini, S., Rabe, J. P., Samori, P. & Spada, G. P. (2000). Chem. Eur. J. 6, 3242–3248. CrossRef PubMed CAS Google Scholar
Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140–147. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Jai-nhuknan, J., Karipides, A. G. & Cantrell, J. S. (1997). Acta Cryst. C53, 454–455. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). In Hydrogen Bonding in Biological Structures. Berlin: Springer Verlag. Google Scholar
Langer, V. & Huml, K. (1978). Acta Cryst. B34, 1157–1163. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Lehn, J. M. (1995). Supramolecular Chemistry, p. 121. Weinheim: VCH. Google Scholar
Lippert, B. (2005). Progress in Inorganic Chemistry, Vol. 54, edited by K. D. Karlin, pp. 385–447. New York: John Wiley and Sons. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland. Google Scholar
Prabakaran, P., Robert, J. J., Thomas Muthiah, P., Bocelli, G. & Righi, L. (2001). Acta Cryst. C57, 459–461. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Saenger, W. (1984). Principles of Nucleic Acid Structure. New York: Springer Verlag. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2005). Acta Cryst. E61, o746–o748. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sridhar, B. & Ravikumar, K. (2007). Acta Cryst. C63, o212–o214. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sridhar, B. & Ravikumar, K. (2008). Acta Cryst. C64, o566–o569. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stecher, P. G. (1968). Editor. The Merck Index, 8th ed., p. 319. Rahway: Merck and Co. Google Scholar
Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183–265. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nucleobases can be protonated and thus form various cations. They possess multi-hydrogen-bonding sites and various tautomers (Saenger, 1984), such that they can form an abundance of aggregates through hydrogen bonds, from dimers to infinite extended species (Jai-nhuknan et al., 1997; Bendjeddou et al., 2003; Smith et al., 2005; Sridhar & Ravikumar, 2007).
The protonated nucleobases are present in many biochemical processes, such as enzymatic reactions and the stabilization of triplex structures, and they play a key role in a newly emerging feature of nucleic acid chemistry, namely acid-base catalysis (Lippert, 2005). There ability to form hydrogen-bonded networks is obviously the most important and interesting characteristic, because the self-assembly of hydrogen-bonded networks of these compounds or there derivatives has been used to design or construct highly ordered supramolecular nanostructures which are of interest for their potential applications as molecular devices (Lehn, 1995 & Gottarelli et al., 2000).
The main purpose of the present study is to examine the hydrogen bonding engineered in crystal formed by two monoprotonated nucleobases and one dianion: adeninium cytosinium sulfate [AdH+, CytH+, SO42-].
Adeninium cations can be either mono- or diprotonated and the bond lengths and angles are dependent on the degree of protonation (Hingerty et al., 1981; Langer & Huml, 1978). This form contains three basic N atoms, the most basic site is N1, which accepts the first proton, and the next protonation occurs at N7 and then at N3.
The adeninium cation in this structure is monoprotonated at N1 atom. The protonation on this site is evident from the C—N—C bond angle, indeed we note an increase in the C2A—N1A—C6A bond angle [123.35 (6)°] compared with the corresponding value found in the neutral adenine [119.8°; Voet & Rich, 1970]. The location of the H-atom bonded to N1 in a difference Fourrier map and the successful refinement of its position confirms the protonation on this site.
Cytosine is quite a strong base (pKa1 = 1. 6 and pKa2 = 12.2; Stecher, 1968) and, in the presence of acids, is readily protonated at the N3 ring position. The N3 protonation of the cytosine ring in [AdH+, CytH+, SO42-] is consistent with the larger C2C—N3C—C4C angle [124.30 (6)], and with the location of this H-atom in a difference Fourrier map with the successful refinement of its position. The molecular geometries of the cytosinium cation are in good agreement with those of similar structures (Prabakaran et al., 2001; Sridhar & Ravikumar, 2008; Smith et al., 2005).
In the sulfate anion, S atom is linked to four equivalents short bonds of 1.4706 (10) Å to O1 and O2, 1.4895 (10) Å to O3 and 1.4905 (10) Å to O4, which confirm the absence of proton in this anion.
The asymetric unit, of the title compound, is thus formed by one adeninium cation, one cytosinium cation and one sulfate dianion (Fig. 1).
The three-dimensional crystal structure is stabilized by thirteen hydrogen bonds with four different modes viz. AdH+···AdH+, AdH+···CytH+, AdH+···SO42- and CytH+···SO42- (Table 1).
The alone AdH+···AdH+ hydrogen bond involving the Hoogsteen faces (atoms N2A and N7A) of the adeninium cation form a centrosymmetric dimer generating a characteristic R22(10) motif (Bernstein et al., 1995) (Fig. 2).
Cytosinium cation is linked to adeninium throught three hydrogen bonds where O5C and C6C acts as acceptor and donor respectively (Table 1). The oxygen atom O5C is involving with two symmetric adeninium cations into a three-centred hydrogen-bonding pattern (Jeffrey & Saenger, 1991). The combination of this three-centred hydrogen bond with N2A—H3A···N7A (AdH+···AdH+) generates a ring with R32(7) motif (Fig. 2). The weak C6C—H6C···N3A forms with C8A—H8A···O5C a R44(20) ring and interlink cations into a two-dimentional ribbons developping along a axis (Fig. 3).
AdH+···SO42- and CytH+···SO42- hydrogen bonds ensure junction between the cationic ribbons into a three-dimensional hydrogen bonding network.