metal-organic compounds
(η4-Cycloocta-1,5-diene)diiodidoplatinum(II)
aDépartement de Chimie, Pavillon Alexandre-Vachon, Local 2257, 1045 Avenue de la Médecine, Université Laval, Québec, Canada G1V 0A6
*Correspondence e-mail: frederic.fontaine@chm.ulaval.ca
The monoclinic title complex, [PtI2(C8H12)], characterized by a twisted cyclooctadiene ring, is similar to its Cl and Br orthorhombic homologues. The observed Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the expected range for PtI2 complexes. The C=C double bonds in the molecule differ significantly [1.373 (10) and 1.403 (10) Å]. As expected for a platinum(II) complex, the PtII atom is in a square-planar environment (ΣPtα= 359.71°).
Related literature
For related structures, see: Thibault et al. (2009); Syed et al. (1984); Wiedermann et al. (2005).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809029997/bg2283sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029997/bg2283Isup2.hkl
Diiodo(1,5-cyclooctadiene)platinum(II) was purchased from Strem chemicals and used as received. Crystals were grown by slow evaportion of a codPtI2 solution in CH2Cl2.
All hydrogen atoms were placed in idealized position and refined using a riding model with d(C–H) = 0.98 Å, Uiso=1.2Ueq (C) for vinylic protons and 0.97 Å, Uiso=1.2Ueq (C) for methylene protons.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of 1 showing the numbering scheme adopted. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level. |
[PtI2(C8H12)] | F(000) = 976 |
Mr = 557.07 | Dx = 3.303 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 8928 reflections |
a = 8.3063 (13) Å | θ = 2.5–28.1° |
b = 10.8918 (17) Å | µ = 17.98 mm−1 |
c = 12.939 (2) Å | T = 296 K |
β = 106.892 (2)° | Rectangulaire, yellow |
V = 1120.1 (3) Å3 | 0.58 × 0.56 × 0.42 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2714 independent reflections |
Radiation source: fine-focus sealed tube | 2488 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 28.1°, θmin = 2.5° |
Absorption correction: integration (XPREP; Bruker, 2005) | h = −10→10 |
Tmin = 0.023, Tmax = 0.049 | k = −14→14 |
13155 measured reflections | l = −17→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0427P)2 + 1.2011P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.002 |
2714 reflections | Δρmax = 2.65 e Å−3 |
105 parameters | Δρmin = −1.77 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00188 (15) |
[PtI2(C8H12)] | V = 1120.1 (3) Å3 |
Mr = 557.07 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.3063 (13) Å | µ = 17.98 mm−1 |
b = 10.8918 (17) Å | T = 296 K |
c = 12.939 (2) Å | 0.58 × 0.56 × 0.42 mm |
β = 106.892 (2)° |
Bruker APEXII CCD diffractometer | 2714 independent reflections |
Absorption correction: integration (XPREP; Bruker, 2005) | 2488 reflections with I > 2σ(I) |
Tmin = 0.023, Tmax = 0.049 | Rint = 0.042 |
13155 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.073 | H-atom parameters constrained |
S = 1.09 | Δρmax = 2.65 e Å−3 |
2714 reflections | Δρmin = −1.77 e Å−3 |
105 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.24239 (2) | 0.111767 (17) | 0.248867 (13) | 0.02846 (9) | |
I1 | 0.54151 (5) | 0.14392 (4) | 0.38327 (4) | 0.05103 (13) | |
I2 | 0.37225 (5) | 0.08198 (4) | 0.08927 (3) | 0.05224 (13) | |
C3 | −0.0015 (7) | 0.0311 (6) | 0.1590 (5) | 0.0481 (13) | |
H3 | 0.0045 | −0.0247 | 0.1008 | 0.07 (2)* | |
C2 | −0.0933 (8) | −0.0214 (6) | 0.2341 (6) | 0.0600 (17) | |
H2A | −0.1348 | −0.1026 | 0.2091 | 0.072* | |
H2B | −0.1898 | 0.0300 | 0.2316 | 0.072* | |
C6 | 0.1178 (7) | 0.1941 (6) | 0.3600 (5) | 0.0453 (13) | |
H6 | 0.1898 | 0.2488 | 0.4142 | 0.09 (3)* | |
C7 | 0.1446 (8) | 0.0687 (7) | 0.3837 (5) | 0.0492 (14) | |
H7 | 0.2319 | 0.0518 | 0.4515 | 0.040 (15)* | |
C4 | −0.0014 (8) | 0.1533 (7) | 0.1329 (6) | 0.0539 (16) | |
H4 | 0.0043 | 0.1683 | 0.0594 | 0.09 (3)* | |
C1 | 0.0170 (9) | −0.0302 (7) | 0.3499 (6) | 0.0645 (18) | |
H1A | −0.0545 | −0.0288 | 0.3973 | 0.077* | |
H1B | 0.0746 | −0.1087 | 0.3597 | 0.077* | |
C5 | −0.0526 (8) | 0.2486 (6) | 0.2996 (6) | 0.0620 (18) | |
H5A | −0.1407 | 0.1991 | 0.3142 | 0.074* | |
H5B | −0.0607 | 0.3306 | 0.3270 | 0.074* | |
C8 | −0.0825 (9) | 0.2558 (7) | 0.1778 (7) | 0.076 (2) | |
H8A | −0.2027 | 0.2544 | 0.1425 | 0.091* | |
H8B | −0.0394 | 0.3335 | 0.1606 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.02846 (13) | 0.02936 (13) | 0.02927 (14) | 0.00017 (6) | 0.01107 (9) | −0.00161 (6) |
I1 | 0.0321 (2) | 0.0726 (3) | 0.0459 (2) | −0.00714 (15) | 0.00754 (17) | −0.00476 (18) |
I2 | 0.0537 (3) | 0.0707 (3) | 0.0402 (2) | 0.00935 (18) | 0.02613 (18) | −0.00156 (18) |
C3 | 0.040 (3) | 0.056 (3) | 0.045 (3) | −0.011 (2) | 0.007 (2) | −0.015 (3) |
C2 | 0.056 (4) | 0.055 (4) | 0.073 (4) | −0.024 (3) | 0.025 (3) | −0.020 (3) |
C6 | 0.042 (3) | 0.056 (3) | 0.045 (3) | −0.006 (2) | 0.023 (2) | −0.019 (3) |
C7 | 0.040 (3) | 0.083 (4) | 0.029 (3) | −0.005 (3) | 0.017 (2) | 0.001 (3) |
C4 | 0.031 (3) | 0.082 (5) | 0.047 (4) | 0.013 (3) | 0.008 (3) | 0.008 (3) |
C1 | 0.066 (4) | 0.062 (4) | 0.075 (5) | −0.012 (3) | 0.037 (4) | 0.013 (3) |
C5 | 0.045 (3) | 0.045 (3) | 0.102 (6) | 0.003 (2) | 0.032 (3) | −0.023 (3) |
C8 | 0.051 (4) | 0.076 (5) | 0.102 (6) | 0.027 (3) | 0.022 (4) | 0.029 (4) |
Pt1—C7 | 2.179 (5) | C6—C5 | 1.525 (9) |
Pt1—C4 | 2.188 (6) | C6—H6 | 0.9800 |
Pt1—C6 | 2.193 (5) | C7—C1 | 1.485 (9) |
Pt1—C3 | 2.205 (5) | C7—H7 | 0.9800 |
Pt1—I1 | 2.6094 (5) | C4—C8 | 1.505 (10) |
Pt1—I2 | 2.6130 (5) | C4—H4 | 0.9800 |
C3—C4 | 1.373 (10) | C1—H1A | 0.9700 |
C3—C2 | 1.511 (8) | C1—H1B | 0.9700 |
C3—H3 | 0.9800 | C5—C8 | 1.525 (11) |
C2—C1 | 1.516 (10) | C5—H5A | 0.9700 |
C2—H2A | 0.9700 | C5—H5B | 0.9700 |
C2—H2B | 0.9700 | C8—H8A | 0.9700 |
C6—C7 | 1.403 (10) | C8—H8B | 0.9700 |
C7—Pt1—C4 | 96.2 (3) | Pt1—C6—H6 | 114.3 |
C7—Pt1—C6 | 37.4 (3) | C6—C7—C1 | 126.0 (6) |
C4—Pt1—C6 | 81.2 (2) | C6—C7—Pt1 | 71.8 (3) |
C7—Pt1—C3 | 80.6 (2) | C1—C7—Pt1 | 108.7 (4) |
C4—Pt1—C3 | 36.4 (3) | C6—C7—H7 | 114.0 |
C6—Pt1—C3 | 88.4 (2) | C1—C7—H7 | 114.0 |
C7—Pt1—I1 | 89.98 (16) | Pt1—C7—H7 | 114.0 |
C4—Pt1—I1 | 160.3 (2) | C3—C4—C8 | 126.3 (6) |
C6—Pt1—I1 | 92.71 (15) | C3—C4—Pt1 | 72.4 (3) |
C3—Pt1—I1 | 162.96 (17) | C8—C4—Pt1 | 108.5 (5) |
C7—Pt1—I2 | 160.3 (2) | C3—C4—H4 | 113.8 |
C4—Pt1—I2 | 89.78 (19) | C8—C4—H4 | 113.8 |
C6—Pt1—I2 | 162.00 (17) | Pt1—C4—H4 | 113.8 |
C3—Pt1—I2 | 93.50 (15) | C7—C1—C2 | 114.8 (5) |
I1—Pt1—I2 | 90.662 (19) | C7—C1—H1A | 108.6 |
C4—C3—C2 | 124.1 (6) | C2—C1—H1A | 108.6 |
C4—C3—Pt1 | 71.1 (3) | C7—C1—H1B | 108.6 |
C2—C3—Pt1 | 111.7 (4) | C2—C1—H1B | 108.6 |
C4—C3—H3 | 114.1 | H1A—C1—H1B | 107.5 |
C2—C3—H3 | 114.1 | C8—C5—C6 | 113.4 (5) |
Pt1—C3—H3 | 114.1 | C8—C5—H5A | 108.9 |
C3—C2—C1 | 112.7 (5) | C6—C5—H5A | 108.9 |
C3—C2—H2A | 109.0 | C8—C5—H5B | 108.9 |
C1—C2—H2A | 109.0 | C6—C5—H5B | 108.9 |
C3—C2—H2B | 109.0 | H5A—C5—H5B | 107.7 |
C1—C2—H2B | 109.0 | C4—C8—C5 | 113.9 (6) |
H2A—C2—H2B | 107.8 | C4—C8—H8A | 108.8 |
C7—C6—C5 | 123.8 (5) | C5—C8—H8A | 108.8 |
C7—C6—Pt1 | 70.7 (3) | C4—C8—H8B | 108.8 |
C5—C6—Pt1 | 111.6 (4) | C5—C8—H8B | 108.8 |
C7—C6—H6 | 114.3 | H8A—C8—H8B | 107.7 |
C5—C6—H6 | 114.3 | ||
C7—Pt1—C3—C4 | 114.0 (4) | I2—Pt1—C7—C6 | −173.6 (4) |
C6—Pt1—C3—C4 | 77.2 (4) | C4—Pt1—C7—C1 | 56.1 (5) |
I1—Pt1—C3—C4 | 171.3 (4) | C6—Pt1—C7—C1 | 122.8 (6) |
I2—Pt1—C3—C4 | −84.9 (4) | C3—Pt1—C7—C1 | 23.0 (5) |
C7—Pt1—C3—C2 | −6.1 (5) | I1—Pt1—C7—C1 | −142.7 (5) |
C4—Pt1—C3—C2 | −120.2 (6) | I2—Pt1—C7—C1 | −50.8 (8) |
C6—Pt1—C3—C2 | −43.0 (5) | C2—C3—C4—C8 | 3.5 (11) |
I1—Pt1—C3—C2 | 51.1 (8) | Pt1—C3—C4—C8 | −100.4 (7) |
I2—Pt1—C3—C2 | 155.0 (4) | C2—C3—C4—Pt1 | 103.9 (6) |
C4—C3—C2—C1 | −93.3 (8) | C7—Pt1—C4—C3 | −65.0 (4) |
Pt1—C3—C2—C1 | −12.0 (7) | C6—Pt1—C4—C3 | −99.4 (4) |
C4—Pt1—C6—C7 | 112.4 (4) | I1—Pt1—C4—C3 | −172.5 (4) |
C3—Pt1—C6—C7 | 76.6 (4) | I2—Pt1—C4—C3 | 96.2 (4) |
I1—Pt1—C6—C7 | −86.4 (3) | C7—Pt1—C4—C8 | 58.2 (5) |
I2—Pt1—C6—C7 | 173.0 (4) | C6—Pt1—C4—C8 | 23.8 (5) |
C7—Pt1—C6—C5 | −119.7 (6) | C3—Pt1—C4—C8 | 123.2 (7) |
C4—Pt1—C6—C5 | −7.2 (4) | I1—Pt1—C4—C8 | −49.2 (9) |
C3—Pt1—C6—C5 | −43.1 (4) | I2—Pt1—C4—C8 | −140.6 (5) |
I1—Pt1—C6—C5 | 153.9 (4) | C6—C7—C1—C2 | 43.1 (9) |
I2—Pt1—C6—C5 | 53.4 (7) | Pt1—C7—C1—C2 | −37.6 (8) |
C5—C6—C7—C1 | 3.3 (9) | C3—C2—C1—C7 | 33.5 (9) |
Pt1—C6—C7—C1 | −100.3 (6) | C7—C6—C5—C8 | −91.6 (7) |
C5—C6—C7—Pt1 | 103.6 (5) | Pt1—C6—C5—C8 | −11.0 (7) |
C4—Pt1—C7—C6 | −66.7 (4) | C3—C4—C8—C5 | 43.9 (10) |
C3—Pt1—C7—C6 | −99.8 (4) | Pt1—C4—C8—C5 | −37.5 (8) |
I1—Pt1—C7—C6 | 94.5 (3) | C6—C5—C8—C4 | 32.8 (9) |
Experimental details
Crystal data | |
Chemical formula | [PtI2(C8H12)] |
Mr | 557.07 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 8.3063 (13), 10.8918 (17), 12.939 (2) |
β (°) | 106.892 (2) |
V (Å3) | 1120.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 17.98 |
Crystal size (mm) | 0.58 × 0.56 × 0.42 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Integration (XPREP; Bruker, 2005) |
Tmin, Tmax | 0.023, 0.049 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13155, 2714, 2488 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.664 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.073, 1.09 |
No. of reflections | 2714 |
No. of parameters | 105 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.65, −1.77 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We are grateful to NSERC (Canada), CFI (Canada), FQRNT (Québec), and Université Laval for financial support. M.-H. Thibault acknowledges FQRNT for a scholarship.
References
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). XPREP and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674. CSD CrossRef CAS Web of Science Google Scholar
Thibault, M.-H., Lucier, B. E. G., Schurko, R. W. & Fontaine, F.-G. (2009). Dalton Trans. doi:10.1039/b907737e. Google Scholar
Wiedermann, J., Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (deposition number CCDC 273860). CCDC, Union Road, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound crystallizes in the P2(1)/n space group (Figure 1). Comparison with its dichloro- and dibromo- derivatives shows an important difference as the latter both crystallize in a P2(1)2(1)2(1) space group.
The general aspect of the diiodo complex is similar to the PtCl2 (Syed et al. 1984) and PtBr2 (Wiedermann et al. 2005) complexes with a twisted cyclooctadiene ring. Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the range expected for PtI2 complexes. The C=C double bonds C3—C4 and C6—C7 are of significantly different lenghts (1.373 (10) and 1.403 (10) Å respectively). As expected for platinum(II) complexes, the platinum atom is in a square planar environment (ΣPtα= 359.71°).