metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(η4-Cyclo­octa-1,5-diene)di­iodidoplatinum(II)

aDépartement de Chimie, Pavillon Alexandre-Vachon, Local 2257, 1045 Avenue de la Médecine, Université Laval, Québec, Canada G1V 0A6
*Correspondence e-mail: frederic.fontaine@chm.ulaval.ca

(Received 21 July 2009; accepted 28 July 2009; online 8 August 2009)

The monoclinic title complex, [PtI2(C8H12)], characterized by a twisted cyclo­octa­diene ring, is similar to its Cl and Br ortho­rhom­bic homologues. The observed Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the expected range for PtI2 complexes. The C=C double bonds in the mol­ecule differ significantly [1.373 (10) and 1.403 (10) Å]. As expected for a platinum(II) complex, the PtII atom is in a square-planar environment (ΣPtα= 359.71°).

Related literature

For related structures, see: Thibault et al. (2009[Thibault, M.-H., Lucier, B. E. G., Schurko, R. W. & Fontaine, F.-G. (2009). Dalton Trans. doi:10.1039/b907737e. ]); Syed et al. (1984[Syed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673-3674.]); Wiedermann et al. (2005[Wiedermann, J., Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (deposition number CCDC 273860). CCDC, Union Road, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • [PtI2(C8H12)]

  • Mr = 557.07

  • Monoclinic, P 21 /n

  • a = 8.3063 (13) Å

  • b = 10.8918 (17) Å

  • c = 12.939 (2) Å

  • β = 106.892 (2)°

  • V = 1120.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 17.98 mm−1

  • T = 296 K

  • 0.58 × 0.56 × 0.42 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (XPREP; Bruker, 2005[Bruker (2005). XPREP and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.023, Tmax = 0.049

  • 13155 measured reflections

  • 2714 independent reflections

  • 2488 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.09

  • 2714 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 2.65 e Å−3

  • Δρmin = −1.77 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). XPREP and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound crystallizes in the P2(1)/n space group (Figure 1). Comparison with its dichloro- and dibromo- derivatives shows an important difference as the latter both crystallize in a P2(1)2(1)2(1) space group.

The general aspect of the diiodo complex is similar to the PtCl2 (Syed et al. 1984) and PtBr2 (Wiedermann et al. 2005) complexes with a twisted cyclooctadiene ring. Pt—I bond distances of 2.6094 (5) and 2.6130 (5) Å are in the range expected for PtI2 complexes. The C=C double bonds C3—C4 and C6—C7 are of significantly different lenghts (1.373 (10) and 1.403 (10) Å respectively). As expected for platinum(II) complexes, the platinum atom is in a square planar environment (ΣPtα= 359.71°).

Related literature top

For related structures, see: Thibault et al. (2009); Syed et al. (1984); Wiedermann et al. (2005).

Experimental top

Diiodo(1,5-cyclooctadiene)platinum(II) was purchased from Strem chemicals and used as received. Crystals were grown by slow evaportion of a codPtI2 solution in CH2Cl2.

Refinement top

All hydrogen atoms were placed in idealized position and refined using a riding model with d(C–H) = 0.98 Å, Uiso=1.2Ueq (C) for vinylic protons and 0.97 Å, Uiso=1.2Ueq (C) for methylene protons.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing the numbering scheme adopted. Anisotropic atomic displacement ellipsoids for the non-hydrogen atoms are shown at the 50% probability level.
(η4-Cycloocta-1,5-diene)diiodidoplatinum(II) top
Crystal data top
[PtI2(C8H12)]F(000) = 976
Mr = 557.07Dx = 3.303 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8928 reflections
a = 8.3063 (13) Åθ = 2.5–28.1°
b = 10.8918 (17) ŵ = 17.98 mm1
c = 12.939 (2) ÅT = 296 K
β = 106.892 (2)°Rectangulaire, yellow
V = 1120.1 (3) Å30.58 × 0.56 × 0.42 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2714 independent reflections
Radiation source: fine-focus sealed tube2488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 28.1°, θmin = 2.5°
Absorption correction: integration
(XPREP; Bruker, 2005)
h = 1010
Tmin = 0.023, Tmax = 0.049k = 1414
13155 measured reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.2011P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
2714 reflectionsΔρmax = 2.65 e Å3
105 parametersΔρmin = 1.77 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00188 (15)
Crystal data top
[PtI2(C8H12)]V = 1120.1 (3) Å3
Mr = 557.07Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3063 (13) ŵ = 17.98 mm1
b = 10.8918 (17) ÅT = 296 K
c = 12.939 (2) Å0.58 × 0.56 × 0.42 mm
β = 106.892 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2714 independent reflections
Absorption correction: integration
(XPREP; Bruker, 2005)
2488 reflections with I > 2σ(I)
Tmin = 0.023, Tmax = 0.049Rint = 0.042
13155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.09Δρmax = 2.65 e Å3
2714 reflectionsΔρmin = 1.77 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.24239 (2)0.111767 (17)0.248867 (13)0.02846 (9)
I10.54151 (5)0.14392 (4)0.38327 (4)0.05103 (13)
I20.37225 (5)0.08198 (4)0.08927 (3)0.05224 (13)
C30.0015 (7)0.0311 (6)0.1590 (5)0.0481 (13)
H30.00450.02470.10080.07 (2)*
C20.0933 (8)0.0214 (6)0.2341 (6)0.0600 (17)
H2A0.13480.10260.20910.072*
H2B0.18980.03000.23160.072*
C60.1178 (7)0.1941 (6)0.3600 (5)0.0453 (13)
H60.18980.24880.41420.09 (3)*
C70.1446 (8)0.0687 (7)0.3837 (5)0.0492 (14)
H70.23190.05180.45150.040 (15)*
C40.0014 (8)0.1533 (7)0.1329 (6)0.0539 (16)
H40.00430.16830.05940.09 (3)*
C10.0170 (9)0.0302 (7)0.3499 (6)0.0645 (18)
H1A0.05450.02880.39730.077*
H1B0.07460.10870.35970.077*
C50.0526 (8)0.2486 (6)0.2996 (6)0.0620 (18)
H5A0.14070.19910.31420.074*
H5B0.06070.33060.32700.074*
C80.0825 (9)0.2558 (7)0.1778 (7)0.076 (2)
H8A0.20270.25440.14250.091*
H8B0.03940.33350.16060.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02846 (13)0.02936 (13)0.02927 (14)0.00017 (6)0.01107 (9)0.00161 (6)
I10.0321 (2)0.0726 (3)0.0459 (2)0.00714 (15)0.00754 (17)0.00476 (18)
I20.0537 (3)0.0707 (3)0.0402 (2)0.00935 (18)0.02613 (18)0.00156 (18)
C30.040 (3)0.056 (3)0.045 (3)0.011 (2)0.007 (2)0.015 (3)
C20.056 (4)0.055 (4)0.073 (4)0.024 (3)0.025 (3)0.020 (3)
C60.042 (3)0.056 (3)0.045 (3)0.006 (2)0.023 (2)0.019 (3)
C70.040 (3)0.083 (4)0.029 (3)0.005 (3)0.017 (2)0.001 (3)
C40.031 (3)0.082 (5)0.047 (4)0.013 (3)0.008 (3)0.008 (3)
C10.066 (4)0.062 (4)0.075 (5)0.012 (3)0.037 (4)0.013 (3)
C50.045 (3)0.045 (3)0.102 (6)0.003 (2)0.032 (3)0.023 (3)
C80.051 (4)0.076 (5)0.102 (6)0.027 (3)0.022 (4)0.029 (4)
Geometric parameters (Å, º) top
Pt1—C72.179 (5)C6—C51.525 (9)
Pt1—C42.188 (6)C6—H60.9800
Pt1—C62.193 (5)C7—C11.485 (9)
Pt1—C32.205 (5)C7—H70.9800
Pt1—I12.6094 (5)C4—C81.505 (10)
Pt1—I22.6130 (5)C4—H40.9800
C3—C41.373 (10)C1—H1A0.9700
C3—C21.511 (8)C1—H1B0.9700
C3—H30.9800C5—C81.525 (11)
C2—C11.516 (10)C5—H5A0.9700
C2—H2A0.9700C5—H5B0.9700
C2—H2B0.9700C8—H8A0.9700
C6—C71.403 (10)C8—H8B0.9700
C7—Pt1—C496.2 (3)Pt1—C6—H6114.3
C7—Pt1—C637.4 (3)C6—C7—C1126.0 (6)
C4—Pt1—C681.2 (2)C6—C7—Pt171.8 (3)
C7—Pt1—C380.6 (2)C1—C7—Pt1108.7 (4)
C4—Pt1—C336.4 (3)C6—C7—H7114.0
C6—Pt1—C388.4 (2)C1—C7—H7114.0
C7—Pt1—I189.98 (16)Pt1—C7—H7114.0
C4—Pt1—I1160.3 (2)C3—C4—C8126.3 (6)
C6—Pt1—I192.71 (15)C3—C4—Pt172.4 (3)
C3—Pt1—I1162.96 (17)C8—C4—Pt1108.5 (5)
C7—Pt1—I2160.3 (2)C3—C4—H4113.8
C4—Pt1—I289.78 (19)C8—C4—H4113.8
C6—Pt1—I2162.00 (17)Pt1—C4—H4113.8
C3—Pt1—I293.50 (15)C7—C1—C2114.8 (5)
I1—Pt1—I290.662 (19)C7—C1—H1A108.6
C4—C3—C2124.1 (6)C2—C1—H1A108.6
C4—C3—Pt171.1 (3)C7—C1—H1B108.6
C2—C3—Pt1111.7 (4)C2—C1—H1B108.6
C4—C3—H3114.1H1A—C1—H1B107.5
C2—C3—H3114.1C8—C5—C6113.4 (5)
Pt1—C3—H3114.1C8—C5—H5A108.9
C3—C2—C1112.7 (5)C6—C5—H5A108.9
C3—C2—H2A109.0C8—C5—H5B108.9
C1—C2—H2A109.0C6—C5—H5B108.9
C3—C2—H2B109.0H5A—C5—H5B107.7
C1—C2—H2B109.0C4—C8—C5113.9 (6)
H2A—C2—H2B107.8C4—C8—H8A108.8
C7—C6—C5123.8 (5)C5—C8—H8A108.8
C7—C6—Pt170.7 (3)C4—C8—H8B108.8
C5—C6—Pt1111.6 (4)C5—C8—H8B108.8
C7—C6—H6114.3H8A—C8—H8B107.7
C5—C6—H6114.3
C7—Pt1—C3—C4114.0 (4)I2—Pt1—C7—C6173.6 (4)
C6—Pt1—C3—C477.2 (4)C4—Pt1—C7—C156.1 (5)
I1—Pt1—C3—C4171.3 (4)C6—Pt1—C7—C1122.8 (6)
I2—Pt1—C3—C484.9 (4)C3—Pt1—C7—C123.0 (5)
C7—Pt1—C3—C26.1 (5)I1—Pt1—C7—C1142.7 (5)
C4—Pt1—C3—C2120.2 (6)I2—Pt1—C7—C150.8 (8)
C6—Pt1—C3—C243.0 (5)C2—C3—C4—C83.5 (11)
I1—Pt1—C3—C251.1 (8)Pt1—C3—C4—C8100.4 (7)
I2—Pt1—C3—C2155.0 (4)C2—C3—C4—Pt1103.9 (6)
C4—C3—C2—C193.3 (8)C7—Pt1—C4—C365.0 (4)
Pt1—C3—C2—C112.0 (7)C6—Pt1—C4—C399.4 (4)
C4—Pt1—C6—C7112.4 (4)I1—Pt1—C4—C3172.5 (4)
C3—Pt1—C6—C776.6 (4)I2—Pt1—C4—C396.2 (4)
I1—Pt1—C6—C786.4 (3)C7—Pt1—C4—C858.2 (5)
I2—Pt1—C6—C7173.0 (4)C6—Pt1—C4—C823.8 (5)
C7—Pt1—C6—C5119.7 (6)C3—Pt1—C4—C8123.2 (7)
C4—Pt1—C6—C57.2 (4)I1—Pt1—C4—C849.2 (9)
C3—Pt1—C6—C543.1 (4)I2—Pt1—C4—C8140.6 (5)
I1—Pt1—C6—C5153.9 (4)C6—C7—C1—C243.1 (9)
I2—Pt1—C6—C553.4 (7)Pt1—C7—C1—C237.6 (8)
C5—C6—C7—C13.3 (9)C3—C2—C1—C733.5 (9)
Pt1—C6—C7—C1100.3 (6)C7—C6—C5—C891.6 (7)
C5—C6—C7—Pt1103.6 (5)Pt1—C6—C5—C811.0 (7)
C4—Pt1—C7—C666.7 (4)C3—C4—C8—C543.9 (10)
C3—Pt1—C7—C699.8 (4)Pt1—C4—C8—C537.5 (8)
I1—Pt1—C7—C694.5 (3)C6—C5—C8—C432.8 (9)

Experimental details

Crystal data
Chemical formula[PtI2(C8H12)]
Mr557.07
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.3063 (13), 10.8918 (17), 12.939 (2)
β (°) 106.892 (2)
V3)1120.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)17.98
Crystal size (mm)0.58 × 0.56 × 0.42
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 2005)
Tmin, Tmax0.023, 0.049
No. of measured, independent and
observed [I > 2σ(I)] reflections
13155, 2714, 2488
Rint0.042
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.09
No. of reflections2714
No. of parameters105
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.65, 1.77

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful to NSERC (Canada), CFI (Canada), FQRNT (Québec), and Université Laval for financial support. M.-H. Thibault acknowledges FQRNT for a scholarship.

References

First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). XPREP and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed, A., Stevens, E. D. & Cruz, S. G. (1984). Inorg. Chem. 23, 3673–3674.  CSD CrossRef CAS Web of Science Google Scholar
First citationThibault, M.-H., Lucier, B. E. G., Schurko, R. W. & Fontaine, F.-G. (2009). Dalton Trans. doi:10.1039/b907737e.  Google Scholar
First citationWiedermann, J., Benito-Garagorri, D., Kirchner, K. & Mereiter, K. (2005). Private communication (deposition number CCDC 273860). CCDC, Union Road, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds