organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Furylmethyl­ene)acetohydrazide

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 5 August 2009; accepted 23 August 2009; online 29 August 2009)

In the title mol­ecule, C7H8N2O2, the acetohydrazide group is planar within 0.014 (2) Å and forms a dihedral angle of 5.35 (8)° with the furan ring. The mol­ecule adopts a trans configuration with respect to the C=N bond. In the crystal, molecules are linked into a chain along the a axis by N—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.]). For related structures, see: Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O2

  • Mr = 152.15

  • Triclinic, [P \overline 1]

  • a = 4.4618 (13) Å

  • b = 9.275 (3) Å

  • c = 10.541 (4) Å

  • α = 112.069 (15)°

  • β = 98.135 (16)°

  • γ = 101.945 (11)°

  • V = 383.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.19 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.982

  • 2182 measured reflections

  • 1400 independent reflections

  • 918 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.174

  • S = 0.95

  • 1400 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.06 2.904 (3) 167
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and are used as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

The acetohydrazide group is planar and it forms a dihedral angle of 5.35 (8)° with the benzene ring. The molecule adopts a trans configuration with respect to the CN bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008).

The molecules are linked into a chain along the a axis by N—H···O hydrogen bonds (Table 1, Fig.2).

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li et al. (2008); Tamboura et al. (2009).

Experimental top

Furfuraldehyde (0.96 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 1.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 87% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 485–487 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-(2-Furylmethylene)acetohydrazide top
Crystal data top
C7H8N2O2Z = 2
Mr = 152.15F(000) = 160
Triclinic, P1Dx = 1.317 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4618 (13) ÅCell parameters from 1400 reflections
b = 9.275 (3) Åθ = 2.2–25.5°
c = 10.541 (4) ŵ = 0.10 mm1
α = 112.069 (15)°T = 223 K
β = 98.135 (16)°Block, colourless
γ = 101.945 (11)°0.19 × 0.17 × 0.16 mm
V = 383.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1400 independent reflections
Radiation source: fine-focus sealed tube918 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 55
Tmin = 0.978, Tmax = 0.982k = 1111
2182 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1191P)2]
where P = (Fo2 + 2Fc2)/3
1400 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H8N2O2γ = 101.945 (11)°
Mr = 152.15V = 383.8 (2) Å3
Triclinic, P1Z = 2
a = 4.4618 (13) ÅMo Kα radiation
b = 9.275 (3) ŵ = 0.10 mm1
c = 10.541 (4) ÅT = 223 K
α = 112.069 (15)°0.19 × 0.17 × 0.16 mm
β = 98.135 (16)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
918 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.023
2182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 0.95Δρmax = 0.19 e Å3
1400 reflectionsΔρmin = 0.18 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5605 (4)0.02737 (18)0.15111 (17)0.0701 (6)
O20.0574 (4)0.58652 (17)0.37154 (16)0.0608 (5)
C60.0623 (5)0.4844 (2)0.3031 (2)0.0495 (6)
C50.4180 (5)0.2017 (2)0.3531 (2)0.0505 (6)
H50.40640.23130.44650.061*
C40.5534 (5)0.0730 (3)0.2899 (2)0.0518 (6)
C30.6756 (6)0.0219 (3)0.3396 (3)0.0699 (7)
H30.69930.01580.43070.084*
C20.7615 (7)0.1334 (3)0.2251 (4)0.0826 (9)
H20.85040.21510.22680.099*
C70.0863 (7)0.4567 (3)0.1567 (3)0.0774 (8)
H7A0.04040.54360.13650.116*
H7B0.06220.35570.09110.116*
H7C0.29630.45310.14810.116*
C10.6908 (7)0.0983 (3)0.1166 (3)0.0850 (9)
H10.72530.15220.02820.102*
N20.1808 (4)0.39408 (19)0.36019 (18)0.0499 (5)
H2A0.17370.40990.44540.060*
N10.3127 (4)0.27748 (19)0.28617 (18)0.0487 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0859 (12)0.0630 (10)0.0655 (11)0.0438 (9)0.0226 (9)0.0178 (8)
O20.0828 (12)0.0579 (9)0.0577 (10)0.0425 (9)0.0275 (8)0.0258 (7)
C60.0587 (13)0.0462 (11)0.0482 (12)0.0236 (10)0.0167 (10)0.0186 (9)
C50.0532 (13)0.0525 (12)0.0532 (12)0.0233 (11)0.0170 (10)0.0241 (10)
C40.0512 (13)0.0504 (12)0.0594 (13)0.0210 (10)0.0180 (10)0.0240 (10)
C30.0702 (16)0.0672 (15)0.094 (2)0.0355 (13)0.0237 (14)0.0469 (14)
C20.0707 (17)0.0558 (15)0.130 (3)0.0367 (13)0.0245 (17)0.0383 (17)
C70.117 (2)0.0843 (17)0.0598 (15)0.0623 (17)0.0354 (15)0.0384 (13)
C10.091 (2)0.0633 (16)0.091 (2)0.0469 (16)0.0227 (16)0.0084 (14)
N20.0627 (12)0.0505 (10)0.0475 (10)0.0313 (9)0.0216 (9)0.0214 (8)
N10.0533 (11)0.0457 (10)0.0530 (11)0.0244 (8)0.0182 (8)0.0195 (8)
Geometric parameters (Å, º) top
O1—C11.361 (3)C3—H30.9300
O1—C41.369 (3)C2—C11.317 (4)
O2—C61.228 (2)C2—H20.9300
C6—N21.347 (3)C7—H7A0.9600
C6—C71.490 (3)C7—H7B0.9600
C5—N11.276 (3)C7—H7C0.9600
C5—C41.431 (3)C1—H10.9300
C5—H50.9300N2—N11.373 (2)
C4—C31.345 (3)N2—H2A0.8600
C3—C21.425 (4)
C1—O1—C4106.4 (2)C3—C2—H2126.6
O2—C6—N2120.26 (19)C6—C7—H7A109.5
O2—C6—C7122.07 (19)C6—C7—H7B109.5
N2—C6—C7117.66 (19)H7A—C7—H7B109.5
N1—C5—C4122.5 (2)C6—C7—H7C109.5
N1—C5—H5118.7H7A—C7—H7C109.5
C4—C5—H5118.7H7B—C7—H7C109.5
C3—C4—O1109.4 (2)C2—C1—O1111.0 (2)
C3—C4—C5132.4 (2)C2—C1—H1124.5
O1—C4—C5118.18 (19)O1—C1—H1124.5
C4—C3—C2106.5 (2)C6—N2—N1121.83 (18)
C4—C3—H3126.8C6—N2—H2A119.1
C2—C3—H3126.8N1—N2—H2A119.1
C1—C2—C3106.7 (2)C5—N1—N2115.38 (18)
C1—C2—H2126.6
C1—O1—C4—C30.0 (3)C3—C2—C1—O10.8 (3)
C1—O1—C4—C5178.3 (2)C4—O1—C1—C20.5 (3)
N1—C5—C4—C3179.8 (2)O2—C6—N2—N1179.19 (17)
N1—C5—C4—O11.9 (3)C7—C6—N2—N11.6 (3)
O1—C4—C3—C20.4 (3)C4—C5—N1—N2177.93 (17)
C5—C4—C3—C2177.6 (2)C6—N2—N1—C5179.50 (19)
C4—C3—C2—C10.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.904 (3)167
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8N2O2
Mr152.15
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)4.4618 (13), 9.275 (3), 10.541 (4)
α, β, γ (°)112.069 (15), 98.135 (16), 101.945 (11)
V3)383.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
2182, 1400, 918
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.174, 0.95
No. of reflections1400
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.062.904 (3)167.3
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) and Hangzhou Vocational and Technical College for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B, p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds