metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1055-m1056

Bis[2-(2-pyridylmethyl­ene­amino)benzene­sulfonato-κ3N,N′,O]manganese(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China, and cLeizhou No. 1 Middle School, Leizhou, Guangdong 524200, People's Republic of China
*Correspondence e-mail: 442976264@qq.com

(Received 26 June 2009; accepted 2 August 2009; online 8 August 2009)

The title complex, [Mn(C12H9N2O3S)2]·2H2O, is isotypic with the previously reported ZnII and CdII species. The complex was prepared by the reaction of the potassium salt of 2-(2-pyridylmethyl­eneamino)benzene­sulfonic acid with MnCl2·6H2O in methanol. The complex displays twofold symmetry, with the ligands coordinated in a tridentate meridional-like arrangement through pyridyl N, imine N, and sulfonate O atoms. The metal center has a strongly distorted octa­hedral coordination geometry. The uncoordin­ated water mol­ecules and the complexes participate in a hydrogen-bonding network, forming a two-dimensional structure parallel to the ab plane.

Related literature

For the synthesis of the ligand, see: Casella & Gullotti (1986[Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.]). For the structures of the ZnII and CdII analogues, see: Cai et al. (2008[Cai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.]); Ou-Yang et al. (2008[Ou-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.]). For related Schiff bases complexes, see: Correia et al. (2003[Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464-m466.]); Li et al. (2007[Li, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007). Acta Cryst. E63, m213-m215.], 2008[Li, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr. 38, 711-715.]); Ou-Yang et al. (2009[Ou-Yang, M., Zhao, Z.-Y., Shi, Y.-H., Zhang, Y.-L. & Jiang, Y.-M. (2009). Chin. J. Struct. Chem. 28, 457-460.]); Zhang et al. (2005[Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Yu, K.-B. (2005). Acta Cryst. E61, m446-m448.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H9N2O3S)2]·2H2O

  • Mr = 613.52

  • Orthorhombic, P b c n

  • a = 20.041 (10) Å

  • b = 7.918 (4) Å

  • c = 16.409 (8) Å

  • V = 2604 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 296 K

  • 0.49 × 0.34 × 0.21 mm

Data collection
  • SMART APEX CCD diffractometer

  • Absorption correction: none

  • 13313 measured reflections

  • 2320 independent reflections

  • 1950 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.01

  • 2320 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1W⋯O3i 0.85 2.14 2.993 (3) 179
O4—H2W⋯O2 0.84 2.11 2.866 (3) 151
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past decades, Schiff-base complexes containing sulfonate have received much attention owing to the diverse coordination modes and bridging ability (Zhang et al., 2005; Li et al., 2007; Ou-Yang et al., 2009). Herein, we prepared a mononuclear Mn(II) complex, which is isostructural with [Zn(Paba)2].2 H2O and [Cd(Paba)2].2 H2O, whose structures were described in details (Cai et al., 2008; Ou-Yang et al., 2008). The six-coordinated MnII ion lies on a twofold axis, and two deprotonated PabaH anions coordinate to Mn in a meridional arrangement as N,N',O-tridentate donor ligands. The coordination mode of the complex is similar to that observed in other complexes with N,N',O-tridentate donor ligands (Li et al., 2007, 2008; Correia et al., 2003).

The O—H donor groups from the lattice water molecules and the SO acceptor groups of the Paba ligands participate in the hydrogen bonding through which the complex completes a two-dimensional network parallel to the ab plane (Fig. 2).

Related literature top

For the synthesis of the ligand, see: Casella & Gullotti (1986). For the structures of the ZnII and CdII analogues, see: Cai et al. (2008); Ou-Yang et al. (2008). For related Schiff bases complexes, see: Correia et al. (2003); Li et al. (2007, 2008); Ou-Yang et al. (2009); Zhang et al. (2005).

Experimental top

The potassium salt of 2-(2-pyridylmethyleneamino)benzenesulfonic acid (PabaK) was synthesized according to the literature methods (Casella & Gullotti, 1986). The ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 ml). To this solution, MnCl2 6 H2O (0.5 mmol, 0.12 g) was added, and the resulting mixture was stirred at 333 K for 4 h. Then the mixture was filtrated and the filtrate was left to stand at room temperature. Yellow crystals suitable for X-ray diffraction were obtained after a week in a yield of 55%. Elemental analysis: found C 46.87, H 4.04, N 9.05, S 10.42%; calc. C 46.94, H 3.59, N 9.13, S 10.43%.

Refinement top

C-bonded H atoms were positioned geometrically with C—H distances of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2 Ueq(carrier C). Water H atoms were placed in fixed positions and assigned Uiso values of 1.5 Ueq of the water O atom.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme. The water molecule and all H atoms have been omitted for clarity. Symmetry code for 'A' labelled atoms: 2 - x, y, 1/2 - z.
[Figure 2] Fig. 2. Packing of the title complex, showing the two-dimensional network in the ab plane, linked via hydrogen bonds (dashed lines).
Bis[2-(2-pyridylmethyleneamino)benzenesulfonato-κ3N,N',O]manganese(II) dihydrate top
Crystal data top
[Mn(C12H9N2O3S)2]·2H2OF(000) = 1260
Mr = 613.52Dx = 1.565 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4677 reflections
a = 20.041 (10) Åθ = 2.5–28.5°
b = 7.918 (4) ŵ = 0.72 mm1
c = 16.409 (8) ÅT = 296 K
V = 2604 (2) Å3Block, yellow
Z = 40.49 × 0.34 × 0.21 mm
Data collection top
SMART APEX CCD
diffractometer
1950 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.1°, θmin = 2.5°
ϕ and ω scansh = 2123
13313 measured reflectionsk = 99
2320 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.5899P]
where P = (Fo2 + 2Fc2)/3
2320 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn(C12H9N2O3S)2]·2H2OV = 2604 (2) Å3
Mr = 613.52Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 20.041 (10) ŵ = 0.72 mm1
b = 7.918 (4) ÅT = 296 K
c = 16.409 (8) Å0.49 × 0.34 × 0.21 mm
Data collection top
SMART APEX CCD
diffractometer
1950 reflections with I > 2σ(I)
13313 measured reflectionsRint = 0.028
2320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.47 e Å3
2320 reflectionsΔρmin = 0.41 e Å3
177 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.00000.18060 (6)0.25000.02835 (15)
S10.87380 (3)0.32706 (7)0.33859 (3)0.03333 (17)
O10.94725 (8)0.3323 (2)0.33645 (9)0.0381 (4)
O20.84921 (9)0.1575 (2)0.32866 (10)0.0508 (5)
O30.84826 (8)0.4155 (2)0.40879 (9)0.0466 (4)
N10.99221 (9)0.0275 (2)0.15711 (11)0.0352 (4)
N20.90694 (8)0.2347 (2)0.16781 (10)0.0303 (4)
C11.03597 (13)0.1521 (3)0.14852 (14)0.0444 (6)
H11.07080.16010.18580.053*
C21.03222 (15)0.2704 (3)0.08686 (15)0.0495 (6)
H21.06410.35530.08260.059*
C30.98074 (14)0.2607 (3)0.03207 (16)0.0503 (6)
H30.97670.33990.00950.060*
C40.93496 (13)0.1310 (3)0.03971 (14)0.0440 (6)
H40.89980.12100.00310.053*
C50.94222 (11)0.0165 (3)0.10256 (12)0.0329 (5)
C60.89698 (11)0.1272 (3)0.11156 (13)0.0360 (5)
H60.86100.14000.07620.043*
C70.86610 (10)0.3806 (3)0.17345 (12)0.0321 (5)
C80.84533 (12)0.4702 (3)0.10524 (14)0.0440 (6)
H80.85600.43110.05340.053*
C90.80902 (13)0.6167 (4)0.11399 (15)0.0536 (7)
H90.79500.67540.06800.064*
C100.79326 (14)0.6770 (4)0.19056 (17)0.0542 (7)
H100.76950.77720.19600.065*
C110.81279 (12)0.5887 (3)0.25907 (14)0.0432 (6)
H110.80140.62830.31060.052*
C120.84920 (10)0.4420 (3)0.25118 (11)0.0319 (5)
O40.79877 (12)0.0889 (4)0.44087 (15)0.1140 (12)
H1W0.75700.08690.43200.171*
H2W0.81660.04980.39880.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0279 (3)0.0336 (3)0.0235 (2)0.0000.00482 (17)0.000
S10.0326 (3)0.0437 (3)0.0236 (3)0.0002 (2)0.0001 (2)0.0008 (2)
O10.0316 (8)0.0540 (10)0.0287 (8)0.0050 (7)0.0044 (6)0.0070 (7)
O20.0606 (12)0.0486 (11)0.0431 (10)0.0120 (9)0.0038 (8)0.0083 (8)
O30.0434 (9)0.0699 (12)0.0267 (8)0.0085 (8)0.0051 (7)0.0043 (8)
N10.0409 (10)0.0350 (10)0.0297 (9)0.0024 (8)0.0067 (8)0.0015 (8)
N20.0280 (9)0.0384 (10)0.0245 (8)0.0003 (8)0.0007 (7)0.0004 (7)
C10.0503 (15)0.0428 (14)0.0401 (13)0.0087 (12)0.0108 (11)0.0008 (10)
C20.0684 (17)0.0356 (13)0.0445 (14)0.0116 (12)0.0024 (13)0.0030 (11)
C30.0721 (18)0.0382 (13)0.0406 (13)0.0020 (13)0.0054 (13)0.0095 (11)
C40.0510 (15)0.0466 (14)0.0345 (12)0.0044 (11)0.0110 (11)0.0076 (10)
C50.0350 (11)0.0369 (12)0.0269 (10)0.0033 (9)0.0028 (9)0.0003 (9)
C60.0318 (11)0.0488 (13)0.0273 (11)0.0008 (10)0.0067 (9)0.0017 (10)
C70.0243 (11)0.0435 (13)0.0284 (10)0.0018 (9)0.0006 (8)0.0017 (9)
C80.0398 (13)0.0621 (16)0.0302 (11)0.0098 (12)0.0019 (10)0.0066 (11)
C90.0495 (15)0.0690 (18)0.0421 (14)0.0200 (14)0.0001 (12)0.0159 (13)
C100.0497 (16)0.0556 (17)0.0574 (16)0.0213 (13)0.0015 (13)0.0089 (13)
C110.0380 (13)0.0517 (15)0.0398 (13)0.0107 (11)0.0045 (10)0.0024 (11)
C120.0257 (11)0.0415 (12)0.0284 (11)0.0003 (9)0.0002 (8)0.0014 (9)
O40.0640 (15)0.182 (3)0.0956 (19)0.0353 (17)0.0233 (13)0.075 (2)
Geometric parameters (Å, º) top
Mn1—O12.1382 (16)C3—C41.383 (4)
Mn1—O1i2.1382 (16)C3—H30.9300
Mn1—N12.250 (2)C4—C51.381 (3)
Mn1—N1i2.250 (2)C4—H40.9300
Mn1—N2i2.3412 (19)C5—C61.463 (3)
Mn1—N22.3412 (19)C6—H60.9300
S1—O21.4395 (19)C7—C81.389 (3)
S1—O31.4420 (17)C7—C121.406 (3)
S1—O11.4729 (18)C8—C91.376 (4)
S1—C121.769 (2)C8—H80.9300
N1—C11.327 (3)C9—C101.381 (4)
N1—C51.346 (3)C9—H90.9300
N2—C61.271 (3)C10—C111.380 (3)
N2—C71.418 (3)C10—H100.9300
C1—C21.381 (3)C11—C121.378 (3)
C1—H10.9300C11—H110.9300
C2—C31.371 (4)O4—H1W0.8495
C2—H20.9300O4—H2W0.8364
O1—Mn1—O1i111.67 (10)C1—C2—H2120.6
O1—Mn1—N1145.73 (6)C2—C3—C4118.8 (2)
O1i—Mn1—N189.79 (7)C2—C3—H3120.6
O1—Mn1—N1i89.79 (7)C4—C3—H3120.6
O1i—Mn1—N1i145.73 (6)C5—C4—C3119.0 (2)
N1—Mn1—N1i85.83 (10)C5—C4—H4120.5
O1—Mn1—N2i84.77 (6)C3—C4—H4120.5
O1i—Mn1—N2i83.42 (7)N1—C5—C4122.2 (2)
N1—Mn1—N2i125.42 (7)N1—C5—C6116.40 (18)
N1i—Mn1—N2i71.86 (7)C4—C5—C6121.4 (2)
O1—Mn1—N283.42 (6)N2—C6—C5119.80 (19)
O1i—Mn1—N284.77 (6)N2—C6—H6120.1
N1—Mn1—N271.86 (7)C5—C6—H6120.1
N1i—Mn1—N2125.42 (7)C8—C7—C12118.8 (2)
N2i—Mn1—N2158.90 (9)C8—C7—N2122.43 (19)
O2—S1—O3114.95 (11)C12—C7—N2118.65 (18)
O2—S1—O1111.44 (11)C9—C8—C7120.3 (2)
O3—S1—O1111.11 (9)C9—C8—H8119.8
O2—S1—C12107.02 (10)C7—C8—H8119.8
O3—S1—C12107.40 (11)C8—C9—C10120.5 (2)
O1—S1—C12104.18 (9)C8—C9—H9119.8
S1—O1—Mn1119.62 (9)C10—C9—H9119.8
C1—N1—C5117.98 (19)C11—C10—C9120.1 (2)
C1—N1—Mn1124.77 (15)C11—C10—H10120.0
C5—N1—Mn1117.04 (14)C9—C10—H10120.0
C6—N2—C7120.13 (18)C12—C11—C10120.0 (2)
C6—N2—Mn1114.88 (15)C12—C11—H11120.0
C7—N2—Mn1124.83 (13)C10—C11—H11120.0
N1—C1—C2123.1 (2)C11—C12—C7120.3 (2)
N1—C1—H1118.5C11—C12—S1120.34 (16)
C2—C1—H1118.5C7—C12—S1119.38 (17)
C3—C2—C1118.9 (2)H1W—O4—H2W105.8
C3—C2—H2120.6
O2—S1—O1—Mn141.05 (13)C2—C3—C4—C50.5 (4)
O3—S1—O1—Mn1170.64 (10)C1—N1—C5—C40.9 (3)
C12—S1—O1—Mn174.01 (13)Mn1—N1—C5—C4175.90 (17)
O1i—Mn1—O1—S1115.14 (11)C1—N1—C5—C6177.0 (2)
N1—Mn1—O1—S110.02 (18)Mn1—N1—C5—C62.0 (2)
N1i—Mn1—O1—S192.28 (11)C3—C4—C5—N10.5 (4)
N2i—Mn1—O1—S1164.08 (11)C3—C4—C5—C6177.4 (2)
N2—Mn1—O1—S133.44 (10)C7—N2—C6—C5175.63 (19)
O1—Mn1—N1—C1137.89 (18)Mn1—N2—C6—C50.1 (3)
O1i—Mn1—N1—C191.6 (2)N1—C5—C6—N21.3 (3)
N1i—Mn1—N1—C154.42 (17)C4—C5—C6—N2176.7 (2)
N2i—Mn1—N1—C19.8 (2)C6—N2—C7—C840.0 (3)
N2—Mn1—N1—C1176.1 (2)Mn1—N2—C7—C8135.02 (19)
O1—Mn1—N1—C547.5 (2)C6—N2—C7—C12143.7 (2)
O1i—Mn1—N1—C583.05 (16)Mn1—N2—C7—C1241.3 (3)
N1i—Mn1—N1—C5130.97 (18)C12—C7—C8—C90.2 (4)
N2i—Mn1—N1—C5164.81 (14)N2—C7—C8—C9176.1 (2)
N2—Mn1—N1—C51.52 (15)C7—C8—C9—C100.5 (4)
O1—Mn1—N2—C6156.78 (16)C8—C9—C10—C111.3 (4)
O1i—Mn1—N2—C690.65 (16)C9—C10—C11—C121.3 (4)
N1—Mn1—N2—C60.84 (15)C10—C11—C12—C70.6 (4)
N1i—Mn1—N2—C671.75 (17)C10—C11—C12—S1179.4 (2)
N2i—Mn1—N2—C6146.83 (16)C8—C7—C12—C110.1 (3)
O1—Mn1—N2—C727.95 (16)N2—C7—C12—C11176.3 (2)
O1i—Mn1—N2—C784.62 (16)C8—C7—C12—S1178.73 (17)
N1—Mn1—N2—C7176.11 (17)N2—C7—C12—S14.8 (3)
N1i—Mn1—N2—C7112.98 (16)O2—S1—C12—C11124.5 (2)
N2i—Mn1—N2—C728.44 (15)O3—S1—C12—C110.6 (2)
C5—N1—C1—C20.4 (4)O1—S1—C12—C11117.32 (19)
Mn1—N1—C1—C2174.95 (19)O2—S1—C12—C754.3 (2)
N1—C1—C2—C30.6 (4)O3—S1—C12—C7178.25 (17)
C1—C2—C3—C41.0 (4)O1—S1—C12—C763.82 (19)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O3ii0.852.142.993 (3)179
O4—H2W···O20.842.112.866 (3)151
Symmetry code: (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C12H9N2O3S)2]·2H2O
Mr613.52
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)20.041 (10), 7.918 (4), 16.409 (8)
V3)2604 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.49 × 0.34 × 0.21
Data collection
DiffractometerSMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13313, 2320, 1950
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.01
No. of reflections2320
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.41

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1W···O3i0.852.142.993 (3)179.3
O4—H2W···O20.842.112.866 (3)150.6
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

This work was funded by the Guangxi Science Foundation of the Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, C.-X., Ou-Yang, M., Zhao, Z.-Y. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1195.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCasella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293–1303.  CrossRef CAS Web of Science Google Scholar
First citationCorreia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Lian, B.-R. (2008). J. Chem. Crystallogr. 38, 711–715.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J.-X., Jiang, Y.-M. & Wang, J.-G. (2007). Acta Cryst. E63, m213–m215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu-Yang, M., Huang, X.-R., Zhang, Y.-L. & Jiang, Y.-M. (2008). Acta Cryst. E64, m1461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOu-Yang, M., Zhao, Z.-Y., Shi, Y.-H., Zhang, Y.-L. & Jiang, Y.-M. (2009). Chin. J. Struct. Chem. 28, 457–460.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-H., Jiang, Y.-M., Liu, Z. & Yu, K.-B. (2005). Acta Cryst. E61, m446–m448.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1055-m1056
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds