metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N′-[(E)-(5-Bromo-2-oxidophen­yl)(phenyl)­methyl­ene]-4-chloro­benzo­hydrazidato}pyridine­nickel(II)

aCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shaanxi, People's Republic of China, and bSchool of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, People's Republic of China
*Correspondence e-mail: jichangyou789456@126.com

(Received 16 July 2009; accepted 4 August 2009; online 12 August 2009)

The asymmetric unit of title complex, [Ni(C20H12BrClN2O2)(C5H5N)], contains one complex with the central Ni atom in a slightly distorted square–planar environment, formed by the tridentate hydrazone and the monodentate pyridine ligands, with N atoms in a trans arrangement about the Ni atom.

Related literature

For the coordination properties of aroylhydrazones, see: Ali et al. (2004[Ali, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708-m1709.]); Carcelli et al. (1995[Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43-62.]); Salem (1998[Salem, A. A. (1998). Microchem. J. 60, 51-66.]); Singh et al. (1982[Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77-84.]); Chang et al. (2009[Chang, X.-L., Xie, B., Ji, C.-Y., Xiang, Y.-G. & Zou, L.-K. (2009). Acta Cryst. E65, m794.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H12BrClN2O2)(C5H5N)]

  • Mr = 565.49

  • Monoclinic, P 21 /c

  • a = 9.854 (3) Å

  • b = 21.981 (8) Å

  • c = 10.857 (4) Å

  • β = 102.705 (6)°

  • V = 2294.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.12 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.586, Tmax = 0.720

  • 11902 measured reflections

  • 4065 independent reflections

  • 3109 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.073

  • S = 1.02

  • 4065 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998; Ali et al., 2004) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of our work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here. The geometric features compare well with those observed in a closely related NiII complex including a methyl group in place of the phenyl group in the hydrazone ligand (Chang et al., 2009).

Related literature top

For the coordination properties of aroylhydrazones, see: Ali et al. (2004); Carcelli et al. (1995); Salem (1998); Singh et al. (1982); Chang et al. (2009).

Experimental top

A DMF solution (5 ml) of N'-[(E)-(5-bromo-2-hydroxyphenyl)-(phenyl)methylene]-4-chlorobenzohydrazide (0.25 mmol, 0.108 g) was mixed with a methanol solution (5 ml) of NiCl2.6H2O (0.25 mmol, 0.059 g). The mixture was stirred at 298 K for 4 h. and then filtered. A red precipitate was produced after about 10 days. A pyridine amount (5 ml) was used to dissolve the precipitate at 330 K. Red block-shaped crystals of the title complex were obtained after one month (yield 30%).

Refinement top

H atoms were placed in calculated positions, with C—H bond lengths fixed to 0.93 Å and isotropic displacement parameters computed as Uiso(H) = 1.2Ueq(carrier C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
{N'-[(E)-(5-Bromo-2-oxidophenyl)(phenyl)methylene]-4- chlorobenzohydrazidato}pyridinenickel(II) top
Crystal data top
[Ni(C20H12BrClN2O2)(C5H5N)]F(000) = 1136
Mr = 565.49Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3944 reflections
a = 9.854 (3) Åθ = 2.3–25.5°
b = 21.981 (8) ŵ = 2.73 mm1
c = 10.857 (4) ÅT = 298 K
β = 102.705 (6)°Block, red
V = 2294.0 (14) Å30.21 × 0.16 × 0.12 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
4065 independent reflections
Radiation source: fine-focus sealed tube3109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.586, Tmax = 0.720k = 2625
11902 measured reflectionsl = 125
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.9549P]
where P = (Fo2 + 2Fc2)/3
4065 reflections(Δ/σ)max = 0.002
298 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.40 e Å3
0 constraints
Crystal data top
[Ni(C20H12BrClN2O2)(C5H5N)]V = 2294.0 (14) Å3
Mr = 565.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.854 (3) ŵ = 2.73 mm1
b = 21.981 (8) ÅT = 298 K
c = 10.857 (4) Å0.21 × 0.16 × 0.12 mm
β = 102.705 (6)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4065 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3109 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.720Rint = 0.024
11902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.02Δρmax = 0.37 e Å3
4065 reflectionsΔρmin = 0.40 e Å3
298 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26454 (3)0.532600 (15)1.11149 (3)0.04069 (11)
Br10.09024 (4)0.248039 (14)0.90729 (4)0.07783 (14)
Cl10.75673 (10)0.74454 (4)0.73128 (10)0.0848 (3)
O10.14617 (18)0.47902 (8)1.15713 (16)0.0472 (5)
O20.37690 (18)0.59030 (8)1.06354 (16)0.0458 (4)
N10.2572 (2)0.50057 (9)0.95458 (19)0.0383 (5)
N20.3321 (2)0.53375 (10)0.8816 (2)0.0430 (5)
N30.2890 (2)0.56951 (10)1.2752 (2)0.0448 (5)
C10.0919 (3)0.43111 (12)1.0924 (2)0.0419 (6)
C20.1125 (2)0.41494 (11)0.9716 (2)0.0374 (6)
C30.0546 (3)0.35969 (11)0.9185 (3)0.0431 (6)
H30.06890.34760.84030.052*
C40.0217 (3)0.32383 (12)0.9796 (3)0.0492 (7)
C50.0490 (3)0.34103 (13)1.0941 (3)0.0545 (7)
H50.10420.31691.13350.065*
C60.0061 (3)0.39382 (13)1.1481 (3)0.0521 (7)
H60.01350.40571.22460.062*
C70.1913 (2)0.45224 (11)0.9028 (2)0.0367 (6)
C80.1938 (2)0.43598 (11)0.7696 (2)0.0366 (6)
C90.0738 (3)0.44230 (13)0.6775 (3)0.0510 (7)
H90.00510.45910.69780.061*
C100.0701 (3)0.42394 (16)0.5556 (3)0.0608 (8)
H100.01120.42840.49380.073*
C110.1853 (3)0.39918 (14)0.5251 (3)0.0595 (8)
H110.18190.38570.44330.071*
C120.3056 (3)0.39419 (14)0.6150 (3)0.0571 (8)
H120.38480.37830.59350.069*
C130.3110 (3)0.41244 (12)0.7371 (3)0.0481 (7)
H130.39350.40890.79770.058*
C140.3916 (3)0.57897 (12)0.9492 (2)0.0419 (6)
C150.4824 (3)0.62008 (12)0.8963 (2)0.0428 (6)
C160.5334 (3)0.60263 (13)0.7936 (3)0.0496 (7)
H160.51090.56450.75790.060*
C170.6169 (3)0.64078 (14)0.7431 (3)0.0574 (8)
H170.65020.62870.67310.069*
C180.6507 (3)0.69658 (13)0.7959 (3)0.0551 (8)
C190.6050 (4)0.71440 (15)0.8996 (3)0.0739 (10)
H190.63040.75220.93610.089*
C200.5210 (4)0.67624 (13)0.9501 (3)0.0672 (9)
H200.48980.68831.02120.081*
C210.2964 (3)0.53641 (14)1.3794 (3)0.0527 (7)
H210.29380.49421.37230.063*
C220.3077 (3)0.56172 (16)1.4965 (3)0.0616 (8)
H220.31380.53721.56740.074*
C230.3100 (3)0.62345 (17)1.5074 (3)0.0681 (9)
H230.31580.64181.58560.082*
C240.3034 (3)0.65820 (15)1.4015 (3)0.0662 (9)
H240.30500.70041.40700.079*
C250.2946 (3)0.63000 (13)1.2870 (3)0.0558 (8)
H250.29230.65371.21560.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0429 (2)0.0438 (2)0.03664 (19)0.00025 (15)0.01135 (14)0.00238 (15)
Br10.1043 (3)0.0495 (2)0.0882 (3)0.02548 (18)0.0396 (2)0.00483 (17)
Cl10.0865 (6)0.0756 (6)0.0996 (7)0.0186 (5)0.0359 (5)0.0262 (5)
O10.0524 (11)0.0530 (11)0.0399 (10)0.0067 (9)0.0185 (9)0.0045 (9)
O20.0524 (11)0.0451 (10)0.0413 (10)0.0079 (9)0.0134 (8)0.0051 (8)
N10.0394 (12)0.0400 (12)0.0371 (12)0.0016 (10)0.0118 (9)0.0003 (10)
N20.0455 (12)0.0440 (12)0.0419 (12)0.0066 (11)0.0147 (10)0.0010 (11)
N30.0419 (13)0.0511 (14)0.0429 (14)0.0027 (10)0.0126 (10)0.0044 (11)
C10.0404 (15)0.0457 (15)0.0405 (16)0.0022 (12)0.0107 (12)0.0083 (13)
C20.0354 (13)0.0393 (14)0.0386 (15)0.0033 (11)0.0101 (11)0.0051 (12)
C30.0475 (16)0.0414 (15)0.0426 (15)0.0019 (12)0.0143 (12)0.0040 (12)
C40.0529 (17)0.0413 (15)0.0549 (18)0.0066 (13)0.0149 (14)0.0048 (13)
C50.0594 (18)0.0567 (18)0.0509 (18)0.0104 (15)0.0194 (15)0.0132 (15)
C60.0548 (18)0.0645 (19)0.0399 (16)0.0045 (15)0.0168 (13)0.0040 (14)
C70.0348 (13)0.0391 (14)0.0374 (14)0.0037 (11)0.0106 (11)0.0023 (11)
C80.0389 (14)0.0355 (13)0.0373 (14)0.0051 (11)0.0127 (12)0.0009 (11)
C90.0389 (16)0.0704 (19)0.0456 (17)0.0044 (14)0.0131 (13)0.0035 (14)
C100.0491 (18)0.094 (2)0.0395 (17)0.0009 (16)0.0092 (14)0.0041 (16)
C110.063 (2)0.076 (2)0.0442 (17)0.0075 (17)0.0231 (15)0.0117 (15)
C120.0510 (18)0.067 (2)0.0596 (19)0.0080 (15)0.0262 (16)0.0087 (16)
C130.0399 (15)0.0561 (17)0.0493 (17)0.0040 (13)0.0122 (13)0.0042 (14)
C140.0420 (15)0.0422 (15)0.0422 (16)0.0016 (12)0.0106 (12)0.0002 (13)
C150.0435 (16)0.0406 (15)0.0433 (16)0.0001 (12)0.0076 (12)0.0027 (12)
C160.0477 (16)0.0490 (16)0.0542 (18)0.0042 (13)0.0157 (14)0.0065 (14)
C170.0555 (19)0.064 (2)0.0592 (19)0.0024 (15)0.0262 (15)0.0005 (16)
C180.0520 (17)0.0527 (18)0.061 (2)0.0030 (14)0.0141 (15)0.0148 (15)
C190.106 (3)0.0446 (18)0.077 (2)0.0216 (18)0.033 (2)0.0047 (17)
C200.098 (3)0.0495 (18)0.064 (2)0.0193 (17)0.0373 (19)0.0090 (16)
C210.0522 (17)0.0596 (18)0.0451 (17)0.0029 (15)0.0081 (13)0.0012 (15)
C220.062 (2)0.079 (2)0.0418 (18)0.0070 (17)0.0070 (15)0.0043 (16)
C230.064 (2)0.090 (3)0.048 (2)0.0167 (18)0.0085 (16)0.0215 (19)
C240.071 (2)0.0582 (19)0.070 (2)0.0103 (17)0.0174 (18)0.0202 (18)
C250.0603 (19)0.0534 (19)0.0555 (19)0.0071 (14)0.0167 (15)0.0066 (15)
Geometric parameters (Å, º) top
Ni1—O11.8020 (18)C10—C111.364 (4)
Ni1—N11.830 (2)C10—H100.9300
Ni1—O21.8327 (18)C11—C121.364 (4)
Ni1—N31.920 (2)C11—H110.9300
Br1—C41.901 (3)C12—C131.374 (4)
Cl1—C181.737 (3)C12—H120.9300
O1—C11.313 (3)C13—H130.9300
O2—C141.305 (3)C14—C151.474 (4)
N1—C71.306 (3)C15—C161.375 (4)
N1—N21.400 (3)C15—C201.383 (4)
N2—C141.297 (3)C16—C171.371 (4)
N3—C211.333 (3)C16—H160.9300
N3—C251.336 (4)C17—C181.364 (4)
C1—C61.406 (4)C17—H170.9300
C1—C21.416 (3)C18—C191.359 (4)
C2—C31.410 (3)C19—C201.375 (4)
C2—C71.446 (3)C19—H190.9300
C3—C41.358 (4)C20—H200.9300
C3—H30.9300C21—C221.370 (4)
C4—C51.381 (4)C21—H210.9300
C5—C61.359 (4)C22—C231.362 (4)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—C241.370 (4)
C7—C81.494 (3)C23—H230.9300
C8—C91.378 (4)C24—C251.375 (4)
C8—C131.381 (3)C24—H240.9300
C9—C101.377 (4)C25—H250.9300
C9—H90.9300
O1—Ni1—N196.26 (9)C10—C11—C12119.9 (3)
O1—Ni1—O2176.73 (8)C10—C11—H11120.1
N1—Ni1—O284.52 (8)C12—C11—H11120.1
O1—Ni1—N388.78 (9)C11—C12—C13120.6 (3)
N1—Ni1—N3174.55 (9)C11—C12—H12119.7
O2—Ni1—N390.56 (9)C13—C12—H12119.7
C1—O1—Ni1126.12 (16)C12—C13—C8119.9 (3)
C14—O2—Ni1109.80 (16)C12—C13—H13120.0
C7—N1—N2117.0 (2)C8—C13—H13120.0
C7—N1—Ni1128.91 (17)N2—C14—O2123.6 (2)
N2—N1—Ni1114.09 (15)N2—C14—C15119.2 (2)
C14—N2—N1108.0 (2)O2—C14—C15117.2 (2)
C21—N3—C25118.0 (2)C16—C15—C20118.4 (3)
C21—N3—Ni1121.80 (19)C16—C15—C14120.4 (2)
C25—N3—Ni1120.2 (2)C20—C15—C14121.1 (3)
O1—C1—C6116.8 (2)C17—C16—C15120.8 (3)
O1—C1—C2124.9 (2)C17—C16—H16119.6
C6—C1—C2118.3 (2)C15—C16—H16119.6
C3—C2—C1117.9 (2)C18—C17—C16119.6 (3)
C3—C2—C7119.5 (2)C18—C17—H17120.2
C1—C2—C7122.6 (2)C16—C17—H17120.2
C4—C3—C2121.2 (2)C19—C18—C17120.8 (3)
C4—C3—H3119.4C19—C18—Cl1119.9 (2)
C2—C3—H3119.4C17—C18—Cl1119.3 (2)
C3—C4—C5121.2 (3)C18—C19—C20119.6 (3)
C3—C4—Br1119.4 (2)C18—C19—H19120.2
C5—C4—Br1119.3 (2)C20—C19—H19120.2
C6—C5—C4118.9 (3)C19—C20—C15120.7 (3)
C6—C5—H5120.5C19—C20—H20119.7
C4—C5—H5120.5C15—C20—H20119.7
C5—C6—C1122.2 (3)N3—C21—C22122.9 (3)
C5—C6—H6118.9N3—C21—H21118.5
C1—C6—H6118.9C22—C21—H21118.5
N1—C7—C2120.8 (2)C23—C22—C21118.8 (3)
N1—C7—C8119.9 (2)C23—C22—H22120.6
C2—C7—C8119.3 (2)C21—C22—H22120.6
C9—C8—C13119.0 (2)C22—C23—C24119.1 (3)
C9—C8—C7118.9 (2)C22—C23—H23120.4
C13—C8—C7122.0 (2)C24—C23—H23120.4
C10—C9—C8120.4 (3)C23—C24—C25119.3 (3)
C10—C9—H9119.8C23—C24—H24120.3
C8—C9—H9119.8C25—C24—H24120.3
C11—C10—C9120.2 (3)N3—C25—C24121.9 (3)
C11—C10—H10119.9N3—C25—H25119.1
C9—C10—H10119.9C24—C25—H25119.1
N1—Ni1—O1—C15.7 (2)C2—C7—C8—C968.7 (3)
N3—Ni1—O1—C1172.2 (2)N1—C7—C8—C1373.1 (3)
N1—Ni1—O2—C140.11 (17)C2—C7—C8—C13108.6 (3)
N3—Ni1—O2—C14177.75 (17)C13—C8—C9—C101.6 (4)
O1—Ni1—N1—C73.5 (2)C7—C8—C9—C10175.7 (3)
O2—Ni1—N1—C7179.7 (2)C8—C9—C10—C110.2 (5)
O1—Ni1—N1—N2175.72 (16)C9—C10—C11—C121.9 (5)
O2—Ni1—N1—N21.09 (16)C10—C11—C12—C131.7 (5)
C7—N1—N2—C14178.9 (2)C11—C12—C13—C80.1 (4)
Ni1—N1—N2—C141.8 (2)C9—C8—C13—C121.8 (4)
O1—Ni1—N3—C2139.0 (2)C7—C8—C13—C12175.5 (2)
O2—Ni1—N3—C21144.2 (2)N1—N2—C14—O21.9 (3)
O1—Ni1—N3—C25138.8 (2)N1—N2—C14—C15177.5 (2)
O2—Ni1—N3—C2538.0 (2)Ni1—O2—C14—N21.1 (3)
Ni1—O1—C1—C6177.42 (18)Ni1—O2—C14—C15178.35 (17)
Ni1—O1—C1—C23.2 (4)N2—C14—C15—C1617.2 (4)
O1—C1—C2—C3175.7 (2)O2—C14—C15—C16162.2 (2)
C6—C1—C2—C34.9 (4)N2—C14—C15—C20164.3 (3)
O1—C1—C2—C73.5 (4)O2—C14—C15—C2016.3 (4)
C6—C1—C2—C7175.9 (2)C20—C15—C16—C172.1 (4)
C1—C2—C3—C41.8 (4)C14—C15—C16—C17179.4 (3)
C7—C2—C3—C4179.1 (2)C15—C16—C17—C180.5 (5)
C2—C3—C4—C52.0 (4)C16—C17—C18—C191.3 (5)
C2—C3—C4—Br1177.16 (19)C16—C17—C18—Cl1179.9 (2)
C3—C4—C5—C62.4 (4)C17—C18—C19—C201.5 (5)
Br1—C4—C5—C6176.8 (2)Cl1—C18—C19—C20179.9 (3)
C4—C5—C6—C11.0 (4)C18—C19—C20—C150.1 (5)
O1—C1—C6—C5175.9 (2)C16—C15—C20—C191.9 (5)
C2—C1—C6—C54.7 (4)C14—C15—C20—C19179.6 (3)
N2—N1—C7—C2179.4 (2)C25—N3—C21—C220.8 (4)
Ni1—N1—C7—C21.4 (3)Ni1—N3—C21—C22177.1 (2)
N2—N1—C7—C82.3 (3)N3—C21—C22—C230.8 (5)
Ni1—N1—C7—C8176.90 (17)C21—C22—C23—C241.2 (5)
C3—C2—C7—N1173.4 (2)C22—C23—C24—C250.1 (5)
C1—C2—C7—N15.7 (4)C21—N3—C25—C241.9 (4)
C3—C2—C7—C88.3 (3)Ni1—N3—C25—C24176.0 (2)
C1—C2—C7—C8172.6 (2)C23—C24—C25—N31.5 (5)
N1—C7—C8—C9109.7 (3)

Experimental details

Crystal data
Chemical formula[Ni(C20H12BrClN2O2)(C5H5N)]
Mr565.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.854 (3), 21.981 (8), 10.857 (4)
β (°) 102.705 (6)
V3)2294.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.21 × 0.16 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.586, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
11902, 4065, 3109
Rint0.024
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.073, 1.02
No. of reflections4065
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Postgraduate Foundation of Xi'an Polytechnic University (grant No. Y05–2–09).

References

First citationAli, H. M., Khamis, N. A. & Yamin, B. M. (2004). Acta Cryst. E60, m1708–m1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem. 57, 43–62.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChang, X.-L., Xie, B., Ji, C.-Y., Xiang, Y.-G. & Zou, L.-K. (2009). Acta Cryst. E65, m794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalem, A. A. (1998). Microchem. J. 60, 51–66.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds