organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2070-o2071

Ethyl 4-butyl­amino-3-nitro­benzoate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 July 2009; accepted 27 July 2009; online 8 August 2009)

In the crystal structure of the title compound, C13H18N2O4, the asymmetric unit consists of three crystallographically independent ethyl 4-butyl­amino-3-nitro­benzoate mol­ecules. There is an intra­molecular N—H⋯O hydrogen bond in each mol­ecule, which generates an S(6) ring motif. The structure is stabilized by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For nitro­benzoic acid, see: Brouillette et al. (1999[Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901-1906.]); Williams et al. (1995[Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251-2254.]); For benzimdazole derivatives, see Ozden et al. (2005[Ozden, S., Atabey, D., Yildiz, S. & Goker, H. (2005). Bioorg. Med. Chem. 13, 1587-1597.]); Beaulieu et al. (2004[Beaulieu, P. L., Bousquet, Y., Gauthier, J., Gilard, J., Marquis, M., McKercher, G., Pellerin, C., Valois, S. & Kukolj, G. (2004). J. Med. Chem. 47, 6884-6892.]); Kilburn et al. (2000[Kilburn, J. P., Lau, J. & Jones, R. C. F. (2000). Tetrahedron Lett. 41, 5419-5421.]).

[Scheme 1]

Experimental

Crystal data
  • C13H18N2O4

  • Mr = 266.29

  • Monoclinic, C 2/c

  • a = 65.292 (2) Å

  • b = 3.9555 (2) Å

  • c = 31.4417 (11) Å

  • β = 104.833 (3)°

  • V = 7849.6 (5) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.40 × 0.19 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.997

  • 85498 measured reflections

  • 8991 independent reflections

  • 6753 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.177

  • S = 1.13

  • 8991 reflections

  • 532 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O4Ai 0.89 (3) 2.51 (3) 3.345 (3) 156 (3)
C1A—H1AA⋯O3Aii 0.96 2.41 3.267 (3) 149
N2B—H2NB⋯O4B 0.83 (3) 2.02 (3) 2.637 (3) 130 (3)
N2A—H2NA⋯O4A 0.89 (3) 1.97 (3) 2.636 (3) 131 (3)
N2C—H2NC⋯O4C 0.82 (3) 2.02 (4) 2.635 (3) 132 (3)
C10A—H10F⋯O1B 0.97 2.58 3.542 (4) 169
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitro benzoic acid derivatives are important intermediates for the synthesis of various heterocyclic compounds of pharmacological interest (Brouillette et al. 1999; Williams et al. 1995). The synthesis of novel methyl or ethyl 1H-benzimidazole-5-carboxylates derivatives (Ozden et al. 2005), non-nucleoside benzimidazole-based allosteric inhibitors of the hepatitis C virus ns5b polymerase inhibitors (Beaulieu et al. 2004) and solid-phase synthesis of substituted 2-aminomethyl benzimidazoles (Kilburn et al. 2000) were commonly accessed via nitrobenzoic acid derivatives. As part of an ongoing study on such compounds, in this paper, we present the crystal structure of the title compound, (I), which was synthesized as an intermediate.

The asymmetric unit of (I) consists of three crystallographically independent ethyl 4-(butylamino)-3-nitrobenzoate molecules (A, B & C), as shown in Fig. 1. Three intramolecular N—H···O hydrogen bonds generate S(6) ring motifs (Table 1).

In the crystal structure, in two molecules (A & B), the hydrogen atom attached to the nitrogen atom is hydrogen-bonded to the nitro group oxygen atoms via N—H···O hydrogen bonds to form tandem hydrogen bonds. Here both the hydrogen atoms act as bifurcated donor and the oxygen atom act as bifurcated acceptor. In addition, these neighboring molecules are linked by C—H···O hydrogen bonds along the [1 0 0] direction. Interestingly enough, the molecules C are not linked by any intermolecular interactions (Fig. 2).

Related literature top

For nitrobenzoic acid, see: Brouillette et al. (1999); Williams et al. (1995); For benzimdazole derivatives, see Ozden et al. (2005); Beaulieu et al. (2004); Kilburn et al. (2000).

Experimental top

The title compound was synthesized by adding N,N-diisopropyl ethylamine (DIPEA) (0.20 ml, 1.12 mmol) dropwise to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (0.21 g, 1 mmol) in dry dichloromethane (10 ml). Butylamine (0.10 ml, 1 mmol) was added slowly with stirring, and then the mixture was stirred overnight at room temperature under N2. After completion of the reaction, the mixture was washed with 10% Na2CO3 (10 ml). The aqueous layer was washed again with dichloromethane (3 × 10 ml). The organic fractions were pooled, dried over MgSO4 and the solvent was evaporated in vacuo. Recrystallization with hot hexane afforded the title compound as yellow needle-like crystals.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.82 (3)–0.89 (3) Å] and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. Part of the crystal packing (I). Dashed lines indicate the hydrogen bonding.
Ethyl 4-butylamino-3-nitrobenzoate top
Crystal data top
C13H18N2O4F(000) = 3408
Mr = 266.29Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8010 reflections
a = 65.292 (2) Åθ = 0.0–0.0°
b = 3.9555 (2) ŵ = 0.10 mm1
c = 31.4417 (11) ÅT = 100 K
β = 104.833 (3)°Needle, yellow
V = 7849.6 (5) Å30.40 × 0.19 × 0.03 mm
Z = 24
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8991 independent reflections
Radiation source: fine-focus sealed tube6753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ϕ and ω scansθmax = 27.5°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 8484
Tmin = 0.915, Tmax = 0.997k = 55
85498 measured reflectionsl = 4040
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.04P)2 + 36.3175P]
where P = (Fo2 + 2Fc2)/3
8991 reflections(Δ/σ)max < 0.001
532 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C13H18N2O4V = 7849.6 (5) Å3
Mr = 266.29Z = 24
Monoclinic, C2/cMo Kα radiation
a = 65.292 (2) ŵ = 0.10 mm1
b = 3.9555 (2) ÅT = 100 K
c = 31.4417 (11) Å0.40 × 0.19 × 0.03 mm
β = 104.833 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6753 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.997Rint = 0.090
85498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.04P)2 + 36.3175P]
where P = (Fo2 + 2Fc2)/3
8991 reflectionsΔρmax = 0.31 e Å3
532 parametersΔρmin = 0.25 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.06501 (3)0.0471 (6)0.49353 (6)0.0262 (5)
O2A0.03378 (3)0.2100 (5)0.48936 (6)0.0201 (4)
O3A0.00677 (3)0.6630 (6)0.35544 (6)0.0252 (5)
O4A0.00171 (3)0.6139 (6)0.29354 (6)0.0229 (5)
N1A0.00508 (4)0.5558 (6)0.33362 (8)0.0188 (5)
N2A0.03624 (4)0.2884 (7)0.28855 (8)0.0178 (5)
C1A0.01824 (5)0.2944 (9)0.54946 (9)0.0257 (7)
H1AA0.02070.28750.58090.039*
H1AB0.00680.14400.53630.039*
H1AC0.01460.52060.53920.039*
C2A0.03805 (4)0.1864 (8)0.53679 (9)0.0215 (6)
H2AA0.04980.33260.55060.026*
H2AB0.04170.04400.54630.026*
C3A0.04914 (4)0.0866 (8)0.47201 (9)0.0187 (6)
C4A0.04423 (4)0.1364 (7)0.42388 (9)0.0170 (6)
C5A0.02675 (4)0.3068 (7)0.39999 (9)0.0165 (6)
H5AA0.01690.38860.41410.020*
C6A0.02354 (4)0.3594 (7)0.35516 (9)0.0169 (6)
C7A0.03814 (4)0.2401 (7)0.33173 (9)0.0165 (6)
C8A0.05587 (4)0.0581 (7)0.35738 (9)0.0176 (6)
H8AA0.06570.03040.34360.021*
C9A0.05883 (4)0.0099 (8)0.40161 (9)0.0181 (6)
H9AA0.07070.10830.41730.022*
C10A0.05237 (4)0.1805 (8)0.26671 (9)0.0180 (6)
H10E0.05470.06070.27080.022*
H10F0.06560.29560.27980.022*
C11A0.04547 (4)0.2598 (8)0.21793 (9)0.0185 (6)
H11E0.04160.49670.21400.022*
H11F0.03300.12670.20440.022*
C12A0.06284 (4)0.1846 (8)0.19501 (9)0.0191 (6)
H12E0.06680.05150.19940.023*
H12F0.07520.32010.20830.023*
C13A0.05590 (5)0.2592 (9)0.14579 (9)0.0257 (7)
H13G0.06680.18900.13220.038*
H13H0.05350.49740.14130.038*
H13I0.04310.13800.13290.038*
O1B0.09697 (3)0.7037 (6)0.30897 (7)0.0264 (5)
O2B0.12968 (3)0.9272 (6)0.32094 (6)0.0230 (5)
O3B0.17262 (3)1.0571 (6)0.46621 (7)0.0286 (5)
O4B0.16496 (3)0.8443 (6)0.52368 (6)0.0248 (5)
N1B0.16074 (3)0.8951 (7)0.48336 (8)0.0195 (5)
N2B0.12866 (4)0.5300 (7)0.51718 (8)0.0188 (5)
C1B0.14493 (5)1.1508 (9)0.26583 (10)0.0293 (7)
H1BA0.14231.21670.23550.044*
H1BB0.15570.97980.27220.044*
H1BC0.14961.34370.28430.044*
C2B0.12485 (4)1.0126 (9)0.27447 (9)0.0240 (7)
H2BA0.11371.18070.26740.029*
H2BB0.12020.81330.25660.029*
C3B0.11389 (4)0.7744 (8)0.33400 (9)0.0191 (6)
C4B0.11916 (4)0.7104 (8)0.38191 (9)0.0183 (6)
C5B0.13752 (4)0.8196 (8)0.41074 (9)0.0188 (6)
H5BA0.14760.93390.40010.023*
C6B0.14114 (4)0.7609 (7)0.45575 (9)0.0169 (6)
C7B0.12620 (4)0.5899 (7)0.47410 (9)0.0159 (6)
C8B0.10746 (4)0.4822 (8)0.44326 (9)0.0199 (6)
H8BA0.09710.37030.45340.024*
C9B0.10416 (4)0.5381 (8)0.39906 (9)0.0194 (6)
H9BA0.09170.46050.37990.023*
C10B0.11209 (4)0.3819 (7)0.53512 (9)0.0174 (6)
H10C0.10830.16020.52230.021*
H10D0.09950.52340.52760.021*
C11B0.11981 (4)0.3507 (8)0.58467 (9)0.0197 (6)
H11C0.12470.56960.59710.024*
H11D0.13170.19540.59190.024*
C12B0.10245 (4)0.2244 (8)0.60518 (9)0.0217 (6)
H12C0.09730.00790.59240.026*
H12D0.09070.38260.59860.026*
C13B0.11062 (5)0.1861 (10)0.65495 (10)0.0344 (8)
H13D0.09940.10520.66690.052*
H13E0.11550.40130.66780.052*
H13F0.12210.02770.66150.052*
O1C0.23186 (3)1.0386 (6)0.33479 (6)0.0234 (5)
O2C0.19996 (3)1.2945 (6)0.31998 (6)0.0206 (4)
O3C0.15980 (3)1.4495 (6)0.17315 (7)0.0270 (5)
O4C0.16732 (3)1.2089 (6)0.11696 (6)0.0241 (5)
N1C0.17152 (3)1.2711 (6)0.15709 (8)0.0184 (5)
N2C0.20352 (4)0.8875 (6)0.12565 (8)0.0168 (5)
C1C0.18335 (5)1.5198 (9)0.37305 (10)0.0257 (7)
H1CA0.18541.58710.40320.039*
H1CB0.17231.35260.36580.039*
H1CC0.17931.71310.35430.039*
C2C0.20364 (5)1.3733 (8)0.36649 (9)0.0222 (6)
H2CA0.21511.53540.37530.027*
H2CB0.20741.17030.38400.027*
C3C0.21578 (4)1.1305 (7)0.30853 (9)0.0179 (6)
C4C0.21160 (4)1.0758 (7)0.26043 (9)0.0162 (6)
C5C0.19371 (4)1.1935 (7)0.23052 (9)0.0157 (5)
H5CA0.18361.31320.24040.019*
C6C0.19066 (4)1.1347 (7)0.18548 (9)0.0157 (6)
C7C0.20581 (4)0.9571 (7)0.16860 (9)0.0146 (5)
C8C0.22437 (4)0.8497 (7)0.20039 (9)0.0158 (6)
H8CA0.23500.74100.19090.019*
C9C0.22695 (4)0.9016 (7)0.24435 (9)0.0163 (6)
H9CA0.23910.82050.26420.020*
C10C0.22007 (4)0.7308 (8)0.10874 (9)0.0177 (6)
H10A0.22410.51610.12340.021*
H10B0.23250.87560.11480.021*
C11C0.21220 (4)0.6747 (8)0.05957 (9)0.0180 (6)
H11A0.20720.88760.04540.022*
H11B0.20030.51880.05390.022*
C12C0.22942 (4)0.5331 (8)0.03965 (9)0.0197 (6)
H12A0.23470.32340.05440.024*
H12B0.24110.69200.04460.024*
C13C0.22125 (5)0.4672 (8)0.00982 (9)0.0245 (7)
H13A0.23250.37440.02090.037*
H13B0.21650.67580.02470.037*
H13C0.20970.31000.01490.037*
H2NB0.1398 (5)0.593 (9)0.5348 (10)0.020 (8)*
H2NA0.0249 (5)0.402 (9)0.2736 (11)0.028 (9)*
H2NC0.1923 (5)0.941 (10)0.1086 (11)0.031 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0196 (10)0.0369 (13)0.0205 (10)0.0087 (10)0.0024 (8)0.0007 (10)
O2A0.0190 (10)0.0275 (12)0.0135 (9)0.0031 (9)0.0034 (8)0.0003 (8)
O3A0.0217 (10)0.0356 (13)0.0196 (10)0.0082 (10)0.0073 (8)0.0022 (10)
O4A0.0197 (10)0.0314 (13)0.0172 (10)0.0040 (9)0.0043 (8)0.0028 (9)
N1A0.0162 (11)0.0206 (13)0.0207 (12)0.0002 (10)0.0068 (9)0.0007 (10)
N2A0.0159 (11)0.0208 (13)0.0171 (12)0.0009 (10)0.0047 (9)0.0001 (10)
C1A0.0283 (16)0.0309 (18)0.0176 (14)0.0024 (14)0.0054 (12)0.0006 (13)
C2A0.0240 (14)0.0269 (16)0.0122 (13)0.0025 (13)0.0018 (11)0.0018 (12)
C3A0.0161 (13)0.0203 (15)0.0202 (14)0.0013 (11)0.0054 (11)0.0033 (12)
C4A0.0144 (13)0.0190 (15)0.0176 (13)0.0029 (11)0.0040 (10)0.0005 (11)
C5A0.0148 (12)0.0178 (14)0.0179 (13)0.0021 (11)0.0057 (10)0.0006 (11)
C6A0.0138 (12)0.0164 (14)0.0198 (14)0.0021 (11)0.0029 (10)0.0006 (11)
C7A0.0158 (13)0.0155 (14)0.0188 (14)0.0042 (11)0.0053 (10)0.0026 (11)
C8A0.0125 (12)0.0193 (15)0.0219 (14)0.0006 (11)0.0057 (11)0.0035 (12)
C9A0.0130 (12)0.0205 (15)0.0198 (14)0.0021 (11)0.0021 (10)0.0022 (12)
C10A0.0175 (13)0.0187 (15)0.0193 (14)0.0000 (11)0.0073 (11)0.0010 (12)
C11A0.0149 (13)0.0219 (15)0.0193 (14)0.0008 (11)0.0055 (11)0.0027 (12)
C12A0.0179 (13)0.0187 (15)0.0217 (14)0.0012 (11)0.0072 (11)0.0004 (12)
C13A0.0261 (15)0.0282 (18)0.0242 (16)0.0009 (13)0.0091 (12)0.0009 (13)
O1B0.0195 (10)0.0355 (13)0.0224 (11)0.0074 (10)0.0022 (8)0.0008 (10)
O2B0.0163 (10)0.0352 (13)0.0175 (10)0.0057 (9)0.0045 (8)0.0021 (9)
O3B0.0199 (10)0.0415 (14)0.0237 (11)0.0123 (10)0.0045 (9)0.0017 (10)
O4B0.0189 (10)0.0381 (13)0.0154 (10)0.0051 (9)0.0008 (8)0.0010 (9)
N1B0.0130 (11)0.0241 (14)0.0210 (13)0.0010 (10)0.0038 (9)0.0006 (10)
N2B0.0140 (11)0.0228 (13)0.0191 (12)0.0029 (10)0.0032 (10)0.0010 (10)
C1B0.0282 (16)0.0359 (19)0.0233 (16)0.0036 (15)0.0053 (13)0.0032 (14)
C2B0.0205 (14)0.0333 (18)0.0172 (14)0.0028 (13)0.0027 (11)0.0011 (13)
C3B0.0162 (13)0.0199 (15)0.0217 (14)0.0008 (11)0.0058 (11)0.0023 (12)
C4B0.0143 (13)0.0209 (15)0.0198 (14)0.0005 (11)0.0043 (11)0.0015 (12)
C5B0.0141 (13)0.0208 (15)0.0227 (15)0.0007 (11)0.0071 (11)0.0013 (12)
C6B0.0128 (12)0.0180 (14)0.0196 (14)0.0002 (11)0.0036 (10)0.0021 (11)
C7B0.0139 (12)0.0166 (14)0.0171 (13)0.0031 (11)0.0039 (10)0.0004 (11)
C8B0.0151 (13)0.0208 (15)0.0244 (15)0.0012 (11)0.0063 (11)0.0029 (12)
C9B0.0143 (13)0.0201 (15)0.0225 (14)0.0029 (11)0.0022 (11)0.0049 (12)
C10B0.0131 (12)0.0182 (15)0.0219 (14)0.0005 (11)0.0062 (11)0.0008 (12)
C11B0.0174 (13)0.0208 (15)0.0218 (15)0.0011 (12)0.0066 (11)0.0013 (12)
C12B0.0204 (14)0.0261 (17)0.0196 (14)0.0027 (12)0.0067 (11)0.0003 (12)
C13B0.0307 (17)0.051 (2)0.0226 (16)0.0128 (17)0.0083 (13)0.0041 (16)
O1C0.0148 (10)0.0350 (13)0.0185 (10)0.0006 (9)0.0007 (8)0.0032 (9)
O2C0.0179 (10)0.0288 (12)0.0141 (9)0.0017 (9)0.0022 (7)0.0049 (9)
O3C0.0205 (10)0.0375 (14)0.0228 (11)0.0125 (10)0.0053 (8)0.0009 (10)
O4C0.0192 (10)0.0361 (13)0.0155 (10)0.0058 (9)0.0016 (8)0.0018 (9)
N1C0.0143 (11)0.0222 (13)0.0194 (12)0.0006 (10)0.0056 (9)0.0006 (10)
N2C0.0141 (11)0.0207 (13)0.0152 (12)0.0015 (10)0.0030 (9)0.0004 (10)
C1C0.0250 (15)0.0306 (18)0.0219 (15)0.0012 (13)0.0068 (12)0.0049 (13)
C2C0.0233 (14)0.0294 (17)0.0121 (13)0.0020 (13)0.0012 (11)0.0041 (12)
C3C0.0157 (13)0.0173 (15)0.0204 (14)0.0034 (11)0.0043 (11)0.0018 (11)
C4C0.0147 (12)0.0149 (14)0.0188 (13)0.0048 (11)0.0043 (10)0.0002 (11)
C5C0.0147 (12)0.0159 (14)0.0175 (13)0.0029 (11)0.0057 (10)0.0006 (11)
C6C0.0116 (12)0.0176 (14)0.0165 (13)0.0004 (10)0.0012 (10)0.0037 (11)
C7C0.0135 (12)0.0124 (13)0.0183 (13)0.0019 (10)0.0048 (10)0.0011 (11)
C8C0.0119 (12)0.0153 (14)0.0201 (14)0.0009 (10)0.0038 (10)0.0008 (11)
C9C0.0139 (12)0.0144 (14)0.0189 (14)0.0015 (11)0.0011 (10)0.0009 (11)
C10C0.0146 (12)0.0204 (15)0.0184 (14)0.0015 (11)0.0048 (10)0.0001 (12)
C11C0.0157 (13)0.0200 (15)0.0179 (14)0.0008 (11)0.0033 (10)0.0005 (12)
C12C0.0187 (13)0.0200 (15)0.0214 (14)0.0014 (12)0.0072 (11)0.0001 (12)
C13C0.0261 (15)0.0265 (17)0.0225 (15)0.0039 (13)0.0091 (12)0.0011 (13)
Geometric parameters (Å, º) top
O1A—C3A1.205 (3)C5B—H5BA0.9300
O2A—C3A1.350 (3)C6B—C7B1.425 (4)
O2A—C2A1.449 (3)C7B—C8B1.418 (4)
O3A—N1A1.233 (3)C8B—C9B1.369 (4)
O4A—N1A1.244 (3)C8B—H8BA0.9300
N1A—C6A1.448 (4)C9B—H9BA0.9300
N2A—C7A1.345 (3)C10B—C11B1.515 (4)
N2A—C10A1.460 (3)C10B—H10C0.9700
N2A—H2NA0.89 (3)C10B—H10D0.9700
C1A—C2A1.510 (4)C11B—C12B1.524 (4)
C1A—H1AA0.9600C11B—H11C0.9700
C1A—H1AB0.9600C11B—H11D0.9700
C1A—H1AC0.9600C12B—C13B1.526 (4)
C2A—H2AA0.9700C12B—H12C0.9700
C2A—H2AB0.9700C12B—H12D0.9700
C3A—C4A1.478 (4)C13B—H13D0.9600
C4A—C5A1.372 (4)C13B—H13E0.9600
C4A—C9A1.411 (4)C13B—H13F0.9600
C5A—C6A1.387 (4)O1C—C3C1.213 (3)
C5A—H5AA0.9300O2C—C3C1.345 (3)
C6A—C7A1.426 (4)O2C—C2C1.454 (3)
C7A—C8A1.425 (4)O3C—N1C1.239 (3)
C8A—C9A1.368 (4)O4C—N1C1.245 (3)
C8A—H8AA0.9300N1C—C6C1.442 (3)
C9A—H9AA0.9300N2C—C7C1.348 (3)
C10A—C11A1.516 (4)N2C—C10C1.460 (3)
C10A—H10E0.9700N2C—H2NC0.82 (3)
C10A—H10F0.9700C1C—C2C1.508 (4)
C11A—C12A1.521 (4)C1C—H1CA0.9600
C11A—H11E0.9700C1C—H1CB0.9600
C11A—H11F0.9700C1C—H1CC0.9600
C12A—C13A1.526 (4)C2C—H2CA0.9700
C12A—H12E0.9700C2C—H2CB0.9700
C12A—H12F0.9700C3C—C4C1.482 (4)
C13A—H13G0.9600C4C—C5C1.379 (4)
C13A—H13H0.9600C4C—C9C1.412 (4)
C13A—H13I0.9600C5C—C6C1.398 (4)
O1B—C3B1.214 (3)C5C—H5CA0.9300
O2B—C3B1.346 (3)C6C—C7C1.422 (4)
O2B—C2B1.454 (3)C7C—C8C1.424 (4)
O3B—N1B1.232 (3)C8C—C9C1.364 (4)
O4B—N1B1.243 (3)C8C—H8CA0.9300
N1B—C6B1.451 (3)C9C—H9CA0.9300
N2B—C7B1.344 (3)C10C—C11C1.515 (4)
N2B—C10B1.465 (3)C10C—H10A0.9700
N2B—H2NB0.83 (3)C10C—H10B0.9700
C1B—C2B1.508 (4)C11C—C12C1.526 (4)
C1B—H1BA0.9600C11C—H11A0.9700
C1B—H1BB0.9600C11C—H11B0.9700
C1B—H1BC0.9600C12C—C13C1.532 (4)
C2B—H2BA0.9700C12C—H12A0.9700
C2B—H2BB0.9700C12C—H12B0.9700
C3B—C4B1.479 (4)C13C—H13A0.9600
C4B—C5B1.374 (4)C13C—H13B0.9600
C4B—C9B1.409 (4)C13C—H13C0.9600
C5B—C6B1.393 (4)
C3A—O2A—C2A115.2 (2)N2B—C7B—C6B125.0 (2)
O3A—N1A—O4A121.8 (2)C8B—C7B—C6B115.2 (2)
O3A—N1A—C6A119.3 (2)C9B—C8B—C7B122.0 (3)
O4A—N1A—C6A118.9 (2)C9B—C8B—H8BA119.0
C7A—N2A—C10A122.8 (2)C7B—C8B—H8BA119.0
C7A—N2A—H2NA117 (2)C8B—C9B—C4B121.5 (3)
C10A—N2A—H2NA120 (2)C8B—C9B—H9BA119.3
C2A—C1A—H1AA109.5C4B—C9B—H9BA119.3
C2A—C1A—H1AB109.5N2B—C10B—C11B110.1 (2)
H1AA—C1A—H1AB109.5N2B—C10B—H10C109.6
C2A—C1A—H1AC109.5C11B—C10B—H10C109.6
H1AA—C1A—H1AC109.5N2B—C10B—H10D109.6
H1AB—C1A—H1AC109.5C11B—C10B—H10D109.6
O2A—C2A—C1A107.5 (2)H10C—C10B—H10D108.1
O2A—C2A—H2AA110.2C10B—C11B—C12B111.9 (2)
C1A—C2A—H2AA110.2C10B—C11B—H11C109.2
O2A—C2A—H2AB110.2C12B—C11B—H11C109.2
C1A—C2A—H2AB110.2C10B—C11B—H11D109.2
H2AA—C2A—H2AB108.5C12B—C11B—H11D109.2
O1A—C3A—O2A123.6 (3)H11C—C11B—H11D107.9
O1A—C3A—C4A124.3 (3)C11B—C12B—C13B111.3 (2)
O2A—C3A—C4A112.1 (2)C11B—C12B—H12C109.4
C5A—C4A—C9A118.4 (3)C13B—C12B—H12C109.4
C5A—C4A—C3A123.9 (2)C11B—C12B—H12D109.4
C9A—C4A—C3A117.7 (2)C13B—C12B—H12D109.4
C4A—C5A—C6A121.2 (3)H12C—C12B—H12D108.0
C4A—C5A—H5AA119.4C12B—C13B—H13D109.5
C6A—C5A—H5AA119.4C12B—C13B—H13E109.5
C5A—C6A—C7A121.9 (3)H13D—C13B—H13E109.5
C5A—C6A—N1A116.6 (2)C12B—C13B—H13F109.5
C7A—C6A—N1A121.5 (2)H13D—C13B—H13F109.5
N2A—C7A—C8A119.6 (2)H13E—C13B—H13F109.5
N2A—C7A—C6A125.0 (3)C3C—O2C—C2C115.6 (2)
C8A—C7A—C6A115.4 (2)O3C—N1C—O4C121.8 (2)
C9A—C8A—C7A121.9 (3)O3C—N1C—C6C119.2 (2)
C9A—C8A—H8AA119.0O4C—N1C—C6C119.0 (2)
C7A—C8A—H8AA119.0C7C—N2C—C10C123.3 (2)
C8A—C9A—C4A121.2 (3)C7C—N2C—H2NC117 (2)
C8A—C9A—H9AA119.4C10C—N2C—H2NC120 (2)
C4A—C9A—H9AA119.4C2C—C1C—H1CA109.5
N2A—C10A—C11A110.6 (2)C2C—C1C—H1CB109.5
N2A—C10A—H10E109.5H1CA—C1C—H1CB109.5
C11A—C10A—H10E109.5C2C—C1C—H1CC109.5
N2A—C10A—H10F109.5H1CA—C1C—H1CC109.5
C11A—C10A—H10F109.5H1CB—C1C—H1CC109.5
H10E—C10A—H10F108.1O2C—C2C—C1C107.2 (2)
C10A—C11A—C12A112.0 (2)O2C—C2C—H2CA110.3
C10A—C11A—H11E109.2C1C—C2C—H2CA110.3
C12A—C11A—H11E109.2O2C—C2C—H2CB110.3
C10A—C11A—H11F109.2C1C—C2C—H2CB110.3
C12A—C11A—H11F109.2H2CA—C2C—H2CB108.5
H11E—C11A—H11F107.9O1C—C3C—O2C123.5 (3)
C11A—C12A—C13A112.3 (2)O1C—C3C—C4C123.5 (3)
C11A—C12A—H12E109.2O2C—C3C—C4C113.0 (2)
C13A—C12A—H12E109.2C5C—C4C—C9C118.4 (2)
C11A—C12A—H12F109.2C5C—C4C—C3C123.3 (2)
C13A—C12A—H12F109.2C9C—C4C—C3C118.3 (2)
H12E—C12A—H12F107.9C4C—C5C—C6C120.7 (3)
C12A—C13A—H13G109.5C4C—C5C—H5CA119.6
C12A—C13A—H13H109.5C6C—C5C—H5CA119.6
H13G—C13A—H13H109.5C5C—C6C—C7C121.8 (2)
C12A—C13A—H13I109.5C5C—C6C—N1C116.2 (2)
H13G—C13A—H13I109.5C7C—C6C—N1C122.0 (2)
H13H—C13A—H13I109.5N2C—C7C—C6C124.4 (2)
C3B—O2B—C2B115.1 (2)N2C—C7C—C8C119.9 (2)
O3B—N1B—O4B122.0 (2)C6C—C7C—C8C115.7 (2)
O3B—N1B—C6B119.1 (2)C9C—C8C—C7C121.9 (2)
O4B—N1B—C6B118.9 (2)C9C—C8C—H8CA119.1
C7B—N2B—C10B123.3 (2)C7C—C8C—H8CA119.1
C7B—N2B—H2NB118 (2)C8C—C9C—C4C121.4 (2)
C10B—N2B—H2NB118 (2)C8C—C9C—H9CA119.3
C2B—C1B—H1BA109.5C4C—C9C—H9CA119.3
C2B—C1B—H1BB109.5N2C—C10C—C11C110.2 (2)
H1BA—C1B—H1BB109.5N2C—C10C—H10A109.6
C2B—C1B—H1BC109.5C11C—C10C—H10A109.6
H1BA—C1B—H1BC109.5N2C—C10C—H10B109.6
H1BB—C1B—H1BC109.5C11C—C10C—H10B109.6
O2B—C2B—C1B106.9 (2)H10A—C10C—H10B108.1
O2B—C2B—H2BA110.3C10C—C11C—C12C112.3 (2)
C1B—C2B—H2BA110.3C10C—C11C—H11A109.1
O2B—C2B—H2BB110.3C12C—C11C—H11A109.1
C1B—C2B—H2BB110.3C10C—C11C—H11B109.1
H2BA—C2B—H2BB108.6C12C—C11C—H11B109.1
O1B—C3B—O2B123.1 (3)H11A—C11C—H11B107.9
O1B—C3B—C4B123.8 (3)C11C—C12C—C13C112.2 (2)
O2B—C3B—C4B113.0 (2)C11C—C12C—H12A109.2
C5B—C4B—C9B118.3 (3)C13C—C12C—H12A109.2
C5B—C4B—C3B123.7 (3)C11C—C12C—H12B109.2
C9B—C4B—C3B118.0 (2)C13C—C12C—H12B109.2
C4B—C5B—C6B120.7 (3)H12A—C12C—H12B107.9
C4B—C5B—H5BA119.7C12C—C13C—H13A109.5
C6B—C5B—H5BA119.7C12C—C13C—H13B109.5
C5B—C6B—C7B122.3 (2)H13A—C13C—H13B109.5
C5B—C6B—N1B116.2 (2)C12C—C13C—H13C109.5
C7B—C6B—N1B121.5 (2)H13A—C13C—H13C109.5
N2B—C7B—C8B119.7 (3)H13B—C13C—H13C109.5
C3A—O2A—C2A—C1A173.0 (3)C10B—N2B—C7B—C8B5.3 (4)
C2A—O2A—C3A—O1A2.9 (4)C10B—N2B—C7B—C6B174.0 (3)
C2A—O2A—C3A—C4A176.8 (2)C5B—C6B—C7B—N2B179.0 (3)
O1A—C3A—C4A—C5A175.9 (3)N1B—C6B—C7B—N2B1.3 (4)
O2A—C3A—C4A—C5A3.8 (4)C5B—C6B—C7B—C8B0.3 (4)
O1A—C3A—C4A—C9A2.0 (5)N1B—C6B—C7B—C8B178.0 (3)
O2A—C3A—C4A—C9A178.3 (3)N2B—C7B—C8B—C9B179.8 (3)
C9A—C4A—C5A—C6A1.0 (4)C6B—C7B—C8B—C9B0.4 (4)
C3A—C4A—C5A—C6A176.9 (3)C7B—C8B—C9B—C4B0.9 (5)
C4A—C5A—C6A—C7A0.0 (4)C5B—C4B—C9B—C8B0.7 (4)
C4A—C5A—C6A—N1A177.2 (3)C3B—C4B—C9B—C8B177.1 (3)
O3A—N1A—C6A—C5A0.5 (4)C7B—N2B—C10B—C11B179.5 (3)
O4A—N1A—C6A—C5A178.9 (3)N2B—C10B—C11B—C12B175.3 (2)
O3A—N1A—C6A—C7A177.7 (3)C10B—C11B—C12B—C13B178.6 (3)
O4A—N1A—C6A—C7A1.7 (4)C3C—O2C—C2C—C1C173.9 (3)
C10A—N2A—C7A—C8A4.0 (4)C2C—O2C—C3C—O1C3.0 (4)
C10A—N2A—C7A—C6A175.8 (3)C2C—O2C—C3C—C4C176.6 (2)
C5A—C6A—C7A—N2A178.5 (3)O1C—C3C—C4C—C5C177.1 (3)
N1A—C6A—C7A—N2A1.4 (4)O2C—C3C—C4C—C5C2.5 (4)
C5A—C6A—C7A—C8A1.3 (4)O1C—C3C—C4C—C9C1.3 (4)
N1A—C6A—C7A—C8A178.3 (2)O2C—C3C—C4C—C9C179.1 (2)
N2A—C7A—C8A—C9A178.2 (3)C9C—C4C—C5C—C6C1.4 (4)
C6A—C7A—C8A—C9A1.6 (4)C3C—C4C—C5C—C6C179.8 (3)
C7A—C8A—C9A—C4A0.6 (4)C4C—C5C—C6C—C7C0.9 (4)
C5A—C4A—C9A—C8A0.7 (4)C4C—C5C—C6C—N1C179.5 (3)
C3A—C4A—C9A—C8A177.3 (3)O3C—N1C—C6C—C5C5.1 (4)
C7A—N2A—C10A—C11A178.3 (3)O4C—N1C—C6C—C5C175.6 (2)
N2A—C10A—C11A—C12A174.0 (2)O3C—N1C—C6C—C7C173.6 (3)
C10A—C11A—C12A—C13A179.2 (3)O4C—N1C—C6C—C7C5.8 (4)
C3B—O2B—C2B—C1B175.0 (3)C10C—N2C—C7C—C6C174.5 (3)
C2B—O2B—C3B—O1B1.8 (4)C10C—N2C—C7C—C8C5.7 (4)
C2B—O2B—C3B—C4B176.7 (2)C5C—C6C—C7C—N2C178.7 (3)
O1B—C3B—C4B—C5B173.5 (3)N1C—C6C—C7C—N2C2.8 (4)
O2B—C3B—C4B—C5B5.0 (4)C5C—C6C—C7C—C8C1.2 (4)
O1B—C3B—C4B—C9B4.2 (5)N1C—C6C—C7C—C8C177.4 (2)
O2B—C3B—C4B—C9B177.3 (3)N2C—C7C—C8C—C9C177.1 (3)
C9B—C4B—C5B—C6B0.0 (4)C6C—C7C—C8C—C9C2.7 (4)
C3B—C4B—C5B—C6B177.7 (3)C7C—C8C—C9C—C4C2.3 (4)
C4B—C5B—C6B—C7B0.5 (4)C5C—C4C—C9C—C8C0.1 (4)
C4B—C5B—C6B—N1B178.3 (3)C3C—C4C—C9C—C8C178.4 (3)
O3B—N1B—C6B—C5B1.8 (4)C7C—N2C—C10C—C11C177.8 (3)
O4B—N1B—C6B—C5B178.6 (3)N2C—C10C—C11C—C12C176.1 (2)
O3B—N1B—C6B—C7B176.1 (3)C10C—C11C—C12C—C13C178.4 (2)
O4B—N1B—C6B—C7B3.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4Ai0.89 (3)2.51 (3)3.345 (3)156 (3)
C1A—H1AA···O3Aii0.962.413.267 (3)149
N2B—H2NB···O4B0.83 (3)2.02 (3)2.637 (3)130 (3)
N2A—H2NA···O4A0.89 (3)1.97 (3)2.636 (3)131 (3)
N2C—H2NC···O4C0.82 (3)2.02 (4)2.635 (3)132 (3)
C10A—H10F···O1B0.972.583.542 (4)169
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H18N2O4
Mr266.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)65.292 (2), 3.9555 (2), 31.4417 (11)
β (°) 104.833 (3)
V3)7849.6 (5)
Z24
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.19 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.915, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
85498, 8991, 6753
Rint0.090
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.177, 1.13
No. of reflections8991
No. of parameters532
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.04P)2 + 36.3175P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O4Ai0.89 (3)2.51 (3)3.345 (3)156 (3)
C1A—H1AA···O3Aii0.962.413.267 (3)148.5
N2B—H2NB···O4B0.83 (3)2.02 (3)2.637 (3)130 (3)
N2A—H2NA···O4A0.89 (3)1.97 (3)2.636 (3)131 (3)
N2C—H2NC···O4C0.82 (3)2.02 (4)2.635 (3)132 (3)
C10A—H10F···O1B0.972.583.542 (4)169.2
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SNNB, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges the USM for a Postdoctoral Research Fellowship. HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBeaulieu, P. L., Bousquet, Y., Gauthier, J., Gilard, J., Marquis, M., McKercher, G., Pellerin, C., Valois, S. & Kukolj, G. (2004). J. Med. Chem. 47, 6884–6892.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901–1906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKilburn, J. P., Lau, J. & Jones, R. C. F. (2000). Tetrahedron Lett. 41, 5419–5421.  Web of Science CrossRef CAS Google Scholar
First citationOzden, S., Atabey, D., Yildiz, S. & Goker, H. (2005). Bioorg. Med. Chem. 13, 1587–1597.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251–2254.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2070-o2071
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds