organic compounds
(1Z)-1-(2,4-Dichlorophenyl)ethan-1-one semicarbazone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Bangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C9H9Cl2N3O, the semicarbazone group is approximately planar, with an r.m.s deviation from the mean plane of 0.011 (2) Å. The dihedral angle between the least-squares planes through the semicarbazone group and the benzene ring is 38.76 (9)°. The is further stabilized by N—H⋯O and C—H⋯O hydrogen bonding.
Related literature
For applications of semicarbazone derivatives, see: Warren et al. (1977); Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Yogeeswari et al. (2004); For semicarbazide preparations, see: Furniss et al. (1978). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809029900/bq2153sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029900/bq2153Isup2.hkl
3.16 g (28.3 mmol) of semicarbazide hydrochloride and 2.83 g (34.5 mmol) of crystallized sodium acetate was dissolved in 25 ml of water (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. (5.0 g, 26.5 mmol) of 2,4-dichloroacetophenone in 25 ml of ethanol was then added and the mixture stirred well for 6 h. The separated semicarbazone was filtered, washed with chilled water and recrystallized from an ethanol-DMF mixture. Yield was found to be 5.23 g, 86.02%. M.p. 501–503 K.
H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.85 (3)–0.91 (3) Å] and allowed to refine freely.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C9H9Cl2N3O | F(000) = 1008 |
Mr = 246.09 | Dx = 1.585 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9961 reflections |
a = 37.8079 (17) Å | θ = 2.9–34.0° |
b = 3.8097 (2) Å | µ = 0.60 mm−1 |
c = 14.4920 (7) Å | T = 100 K |
β = 98.852 (2)° | Plate, colorless |
V = 2062.52 (17) Å3 | 0.42 × 0.14 × 0.04 mm |
Z = 8 |
Bruker SMART APEXII CCD area-detector diffractometer | 4202 independent reflections |
Radiation source: fine-focus sealed tube | 3654 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 34.1°, θmin = 1.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −59→58 |
Tmin = 0.707, Tmax = 0.974 | k = −5→5 |
32124 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.072 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.192 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.1176P)2 + 5.115P] where P = (Fo2 + 2Fc2)/3 |
4202 reflections | (Δ/σ)max = 0.001 |
149 parameters | Δρmax = 3.37 e Å−3 |
0 restraints | Δρmin = −0.82 e Å−3 |
C9H9Cl2N3O | V = 2062.52 (17) Å3 |
Mr = 246.09 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 37.8079 (17) Å | µ = 0.60 mm−1 |
b = 3.8097 (2) Å | T = 100 K |
c = 14.4920 (7) Å | 0.42 × 0.14 × 0.04 mm |
β = 98.852 (2)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4202 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3654 reflections with I > 2σ(I) |
Tmin = 0.707, Tmax = 0.974 | Rint = 0.037 |
32124 measured reflections |
R[F2 > 2σ(F2)] = 0.072 | 0 restraints |
wR(F2) = 0.192 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | Δρmax = 3.37 e Å−3 |
4202 reflections | Δρmin = −0.82 e Å−3 |
149 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.254197 (12) | 1.14825 (12) | 0.14159 (3) | 0.01486 (13) | |
Cl2 | 0.149699 (12) | 0.64254 (12) | −0.11406 (3) | 0.01413 (13) | |
O1 | −0.00572 (4) | 0.4635 (5) | 0.11828 (10) | 0.0162 (3) | |
N1 | 0.08094 (4) | 0.7191 (5) | 0.08948 (11) | 0.0127 (3) | |
N2 | 0.04458 (4) | 0.6666 (5) | 0.06771 (12) | 0.0141 (3) | |
N3 | 0.04484 (5) | 0.5433 (7) | 0.22395 (13) | 0.0222 (4) | |
C1 | 0.14889 (5) | 1.0482 (6) | 0.14140 (13) | 0.0132 (3) | |
H1A | 0.1327 | 1.0954 | 0.1819 | 0.016* | |
C2 | 0.18500 (5) | 1.1187 (5) | 0.17051 (14) | 0.0132 (3) | |
H2A | 0.1928 | 1.2131 | 0.2293 | 0.016* | |
C3 | 0.20913 (5) | 1.0451 (5) | 0.10974 (13) | 0.0120 (3) | |
C4 | 0.19805 (5) | 0.9013 (5) | 0.02261 (13) | 0.0124 (3) | |
H4A | 0.2145 | 0.8508 | −0.0172 | 0.015* | |
C5 | 0.16165 (5) | 0.8336 (5) | −0.00436 (13) | 0.0112 (3) | |
C6 | 0.13617 (5) | 0.9086 (5) | 0.05322 (13) | 0.0112 (3) | |
C7 | 0.09697 (5) | 0.8539 (5) | 0.02541 (13) | 0.0116 (3) | |
C8 | 0.02647 (5) | 0.5559 (6) | 0.13727 (14) | 0.0152 (3) | |
C9 | 0.07833 (5) | 0.9765 (5) | −0.06811 (13) | 0.0123 (3) | |
H9A | 0.0571 | 1.1034 | −0.0601 | 0.018* | |
H9B | 0.0720 | 0.7772 | −0.1078 | 0.018* | |
H9C | 0.0940 | 1.1272 | −0.0962 | 0.018* | |
H1N2 | 0.0320 (9) | 0.660 (8) | 0.014 (2) | 0.016 (7)* | |
H1N3 | 0.0663 (10) | 0.636 (10) | 0.231 (3) | 0.028 (9)* | |
H2N3 | 0.0324 (10) | 0.484 (10) | 0.262 (3) | 0.028 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0092 (2) | 0.0180 (2) | 0.0168 (2) | −0.00196 (13) | 0.00036 (15) | −0.00011 (14) |
Cl2 | 0.0141 (2) | 0.0179 (2) | 0.0105 (2) | −0.00169 (14) | 0.00232 (15) | −0.00251 (14) |
O1 | 0.0090 (6) | 0.0283 (8) | 0.0111 (6) | −0.0027 (5) | 0.0010 (5) | 0.0002 (5) |
N1 | 0.0076 (6) | 0.0192 (7) | 0.0111 (7) | −0.0008 (5) | 0.0009 (5) | 0.0005 (5) |
N2 | 0.0084 (6) | 0.0238 (8) | 0.0097 (7) | −0.0026 (5) | 0.0005 (5) | 0.0012 (5) |
N3 | 0.0114 (7) | 0.0461 (12) | 0.0088 (7) | −0.0060 (8) | 0.0002 (6) | 0.0043 (7) |
C1 | 0.0100 (7) | 0.0191 (8) | 0.0104 (7) | −0.0019 (6) | 0.0016 (6) | −0.0020 (6) |
C2 | 0.0114 (7) | 0.0163 (8) | 0.0114 (7) | −0.0007 (6) | 0.0005 (6) | −0.0018 (6) |
C3 | 0.0082 (7) | 0.0140 (8) | 0.0135 (8) | −0.0007 (6) | 0.0006 (6) | 0.0011 (6) |
C4 | 0.0119 (7) | 0.0126 (7) | 0.0130 (8) | −0.0005 (6) | 0.0027 (6) | −0.0004 (6) |
C5 | 0.0113 (7) | 0.0127 (7) | 0.0097 (7) | 0.0001 (5) | 0.0021 (6) | −0.0005 (5) |
C6 | 0.0104 (7) | 0.0130 (7) | 0.0101 (7) | −0.0007 (6) | 0.0015 (5) | 0.0013 (6) |
C7 | 0.0099 (7) | 0.0141 (8) | 0.0105 (7) | −0.0007 (5) | 0.0009 (6) | −0.0003 (5) |
C8 | 0.0109 (7) | 0.0234 (9) | 0.0116 (8) | −0.0011 (7) | 0.0025 (6) | 0.0017 (7) |
C9 | 0.0107 (7) | 0.0140 (8) | 0.0114 (7) | −0.0011 (6) | −0.0010 (6) | 0.0017 (6) |
Cl1—C3 | 1.7403 (19) | C1—H1A | 0.9300 |
Cl2—C5 | 1.7436 (19) | C2—C3 | 1.391 (3) |
O1—C8 | 1.256 (2) | C2—H2A | 0.9300 |
N1—C7 | 1.291 (2) | C3—C4 | 1.381 (3) |
N1—N2 | 1.377 (2) | C4—C5 | 1.395 (3) |
N2—C8 | 1.369 (2) | C4—H4A | 0.9300 |
N2—H1N2 | 0.85 (3) | C5—C6 | 1.398 (3) |
N3—C8 | 1.339 (3) | C6—C7 | 1.489 (3) |
N3—H1N3 | 0.88 (4) | C7—C9 | 1.503 (3) |
N3—H2N3 | 0.81 (4) | C9—H9A | 0.9600 |
C1—C2 | 1.392 (3) | C9—H9B | 0.9600 |
C1—C6 | 1.399 (3) | C9—H9C | 0.9600 |
C7—N1—N2 | 117.12 (16) | C4—C5—C6 | 122.38 (17) |
C8—N2—N1 | 118.08 (16) | C4—C5—Cl2 | 116.02 (14) |
C8—N2—H1N2 | 113 (2) | C6—C5—Cl2 | 121.59 (15) |
N1—N2—H1N2 | 128 (2) | C5—C6—C1 | 116.83 (17) |
C8—N3—H1N3 | 115 (2) | C5—C6—C7 | 123.95 (17) |
C8—N3—H2N3 | 112 (3) | C1—C6—C7 | 119.21 (16) |
H1N3—N3—H2N3 | 131 (4) | N1—C7—C6 | 114.76 (16) |
C2—C1—C6 | 122.24 (17) | N1—C7—C9 | 124.43 (17) |
C2—C1—H1A | 118.9 | C6—C7—C9 | 120.65 (16) |
C6—C1—H1A | 118.9 | O1—C8—N3 | 122.71 (18) |
C3—C2—C1 | 118.53 (17) | O1—C8—N2 | 120.16 (18) |
C3—C2—H2A | 120.7 | N3—C8—N2 | 117.11 (18) |
C1—C2—H2A | 120.7 | C7—C9—H9A | 109.5 |
C4—C3—C2 | 121.52 (17) | C7—C9—H9B | 109.5 |
C4—C3—Cl1 | 118.62 (14) | H9A—C9—H9B | 109.5 |
C2—C3—Cl1 | 119.83 (15) | C7—C9—H9C | 109.5 |
C3—C4—C5 | 118.48 (17) | H9A—C9—H9C | 109.5 |
C3—C4—H4A | 120.8 | H9B—C9—H9C | 109.5 |
C5—C4—H4A | 120.8 | ||
C7—N1—N2—C8 | −173.82 (19) | Cl2—C5—C6—C7 | −3.6 (3) |
C6—C1—C2—C3 | −0.4 (3) | C2—C1—C6—C5 | 1.6 (3) |
C1—C2—C3—C4 | −0.7 (3) | C2—C1—C6—C7 | −177.46 (18) |
C1—C2—C3—Cl1 | 177.08 (15) | N2—N1—C7—C6 | 179.31 (17) |
C2—C3—C4—C5 | 0.7 (3) | N2—N1—C7—C9 | 4.0 (3) |
Cl1—C3—C4—C5 | −177.15 (14) | C5—C6—C7—N1 | 137.72 (19) |
C3—C4—C5—C6 | 0.5 (3) | C1—C6—C7—N1 | −43.3 (3) |
C3—C4—C5—Cl2 | −178.54 (15) | C5—C6—C7—C9 | −46.8 (3) |
C4—C5—C6—C1 | −1.6 (3) | C1—C6—C7—C9 | 132.2 (2) |
Cl2—C5—C6—C1 | 177.39 (15) | N1—N2—C8—O1 | −171.2 (2) |
C4—C5—C6—C7 | 177.37 (18) | N1—N2—C8—N3 | 7.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.85 (3) | 2.07 (3) | 2.907 (2) | 168 (3) |
N3—H2N3···O1ii | 0.81 (4) | 2.13 (4) | 2.924 (2) | 164 (4) |
C9—H9A···O1iii | 0.96 | 2.59 | 3.465 (2) | 152 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C9H9Cl2N3O |
Mr | 246.09 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 37.8079 (17), 3.8097 (2), 14.4920 (7) |
β (°) | 98.852 (2) |
V (Å3) | 2062.52 (17) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.60 |
Crystal size (mm) | 0.42 × 0.14 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.707, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 32124, 4202, 3654 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.789 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.072, 0.192, 1.11 |
No. of reflections | 4202 |
No. of parameters | 149 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 3.37, −0.82 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N2···O1i | 0.85 (3) | 2.07 (3) | 2.907 (2) | 168 (3) |
N3—H2N3···O1ii | 0.81 (4) | 2.13 (4) | 2.924 (2) | 164 (4) |
C9—H9A···O1iii | 0.96 | 2.59 | 3.465 (2) | 151.9 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, y, −z+1/2; (iii) −x, −y+2, −z. |
Acknowledgements
HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094. CrossRef Google Scholar
Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS. Google Scholar
Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110. Web of Science CrossRef CAS Google Scholar
Pilgram, K. H. G. (1978). US Patent No. 4 108 399. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521. CrossRef CAS PubMed Web of Science Google Scholar
Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. They find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). Keeping in view of their biological importance, we hereby reporting crystal structure of the semicarbazone of commercial importance.
The semicarbazone group (Fig. 1) (C9/C6/C7/N1/N2/C8/O1/N3) is approximately planar, with an r.m.s deviation of 0.011 (2)Å for atom N1, while the dihedral angle between the least-squares plane through the semicarbazone group and the benzene ring is 38.76 (9)°. The molecules are linked via N—H···O hydrogen bonds to generate R22(8) ring motifs (Bernstein et al. 1995). These motifs are further connected through C—H···O hydrogen bonds to form a one-dimensional chain along the [0 1 0] direction (Fig. 2).