organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1Z)-1-(2,4-Di­chloro­phen­yl)ethan-1-one semicarbazone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Bangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 7 July 2009; accepted 28 July 2009; online 8 August 2009)

In the title compound, C9H9Cl2N3O, the semicarbazone group is approximately planar, with an r.m.s deviation from the mean plane of 0.011 (2) Å. The dihedral angle between the least-squares planes through the semicarbazone group and the benzene ring is 38.76 (9)°. The crystal structure is further stabilized by N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For applications of semicarbazone derivatives, see: Warren et al. (1977[Warren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520-1521.]); Chandra & Gupta (2005[Chandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089-1094.]); Jain et al. (2002[Jain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101-110.]); Pilgram (1978[Pilgram, K. H. G. (1978). US Patent No. 4 108 399.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609-613.]); For semicarbazide preparations, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9Cl2N3O

  • Mr = 246.09

  • Monoclinic, C 2/c

  • a = 37.8079 (17) Å

  • b = 3.8097 (2) Å

  • c = 14.4920 (7) Å

  • β = 98.852 (2)°

  • V = 2062.52 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.42 × 0.14 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.974

  • 32124 measured reflections

  • 4202 independent reflections

  • 3654 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.192

  • S = 1.11

  • 4202 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.37 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.85 (3) 2.07 (3) 2.907 (2) 168 (3)
N3—H2N3⋯O1ii 0.81 (4) 2.13 (4) 2.924 (2) 164 (4)
C9—H9A⋯O1iii 0.96 2.59 3.465 (2) 152
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, a semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. They find immense applications in the field of synthetic chemistry, such as medicinal chemistry (Warren et al., 1977), organometallics (Chandra & Gupta, 2005), polymers (Jain et al., 2002) and herbicides (Pilgram, 1978). 4-Sulphamoylphenyl semicarbazones were synthesized and were found to possess anticonvulsant activity (Yogeeswari et al., 2004). Keeping in view of their biological importance, we hereby reporting crystal structure of the semicarbazone of commercial importance.

The semicarbazone group (Fig. 1) (C9/C6/C7/N1/N2/C8/O1/N3) is approximately planar, with an r.m.s deviation of 0.011 (2)Å for atom N1, while the dihedral angle between the least-squares plane through the semicarbazone group and the benzene ring is 38.76 (9)°. The molecules are linked via N—H···O hydrogen bonds to generate R22(8) ring motifs (Bernstein et al. 1995). These motifs are further connected through C—H···O hydrogen bonds to form a one-dimensional chain along the [0 1 0] direction (Fig. 2).

Related literature top

For applications of semicarbazone derivatives, see: Warren et al. (1977); Chandra & Gupta (2005); Jain et al. (2002); Pilgram (1978); Yogeeswari et al. (2004); For semicarbazide preparation, see: Furniss et al. (1978). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

3.16 g (28.3 mmol) of semicarbazide hydrochloride and 2.83 g (34.5 mmol) of crystallized sodium acetate was dissolved in 25 ml of water (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. (5.0 g, 26.5 mmol) of 2,4-dichloroacetophenone in 25 ml of ethanol was then added and the mixture stirred well for 6 h. The separated semicarbazone was filtered, washed with chilled water and recrystallized from an ethanol-DMF mixture. Yield was found to be 5.23 g, 86.02%. M.p. 501–503 K.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The nitrogen H atoms were located from the difference Fourier map [N–H = 0.85 (3)–0.91 (3) Å] and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. An one-dimensional chain of (I) with R22(8) ring motifs along the [010] direction. Dashed lines indicate the hydrogen bonding.
(1Z)-1-(2,4-Dichlorophenyl)ethan-1-one semicarbazone top
Crystal data top
C9H9Cl2N3OF(000) = 1008
Mr = 246.09Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9961 reflections
a = 37.8079 (17) Åθ = 2.9–34.0°
b = 3.8097 (2) ŵ = 0.60 mm1
c = 14.4920 (7) ÅT = 100 K
β = 98.852 (2)°Plate, colorless
V = 2062.52 (17) Å30.42 × 0.14 × 0.04 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4202 independent reflections
Radiation source: fine-focus sealed tube3654 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 34.1°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 5958
Tmin = 0.707, Tmax = 0.974k = 55
32124 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.1176P)2 + 5.115P]
where P = (Fo2 + 2Fc2)/3
4202 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 3.37 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
C9H9Cl2N3OV = 2062.52 (17) Å3
Mr = 246.09Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.8079 (17) ŵ = 0.60 mm1
b = 3.8097 (2) ÅT = 100 K
c = 14.4920 (7) Å0.42 × 0.14 × 0.04 mm
β = 98.852 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4202 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3654 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.974Rint = 0.037
32124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 3.37 e Å3
4202 reflectionsΔρmin = 0.82 e Å3
149 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.254197 (12)1.14825 (12)0.14159 (3)0.01486 (13)
Cl20.149699 (12)0.64254 (12)0.11406 (3)0.01413 (13)
O10.00572 (4)0.4635 (5)0.11828 (10)0.0162 (3)
N10.08094 (4)0.7191 (5)0.08948 (11)0.0127 (3)
N20.04458 (4)0.6666 (5)0.06771 (12)0.0141 (3)
N30.04484 (5)0.5433 (7)0.22395 (13)0.0222 (4)
C10.14889 (5)1.0482 (6)0.14140 (13)0.0132 (3)
H1A0.13271.09540.18190.016*
C20.18500 (5)1.1187 (5)0.17051 (14)0.0132 (3)
H2A0.19281.21310.22930.016*
C30.20913 (5)1.0451 (5)0.10974 (13)0.0120 (3)
C40.19805 (5)0.9013 (5)0.02261 (13)0.0124 (3)
H4A0.21450.85080.01720.015*
C50.16165 (5)0.8336 (5)0.00436 (13)0.0112 (3)
C60.13617 (5)0.9086 (5)0.05322 (13)0.0112 (3)
C70.09697 (5)0.8539 (5)0.02541 (13)0.0116 (3)
C80.02647 (5)0.5559 (6)0.13727 (14)0.0152 (3)
C90.07833 (5)0.9765 (5)0.06811 (13)0.0123 (3)
H9A0.05711.10340.06010.018*
H9B0.07200.77720.10780.018*
H9C0.09401.12720.09620.018*
H1N20.0320 (9)0.660 (8)0.014 (2)0.016 (7)*
H1N30.0663 (10)0.636 (10)0.231 (3)0.028 (9)*
H2N30.0324 (10)0.484 (10)0.262 (3)0.028 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0092 (2)0.0180 (2)0.0168 (2)0.00196 (13)0.00036 (15)0.00011 (14)
Cl20.0141 (2)0.0179 (2)0.0105 (2)0.00169 (14)0.00232 (15)0.00251 (14)
O10.0090 (6)0.0283 (8)0.0111 (6)0.0027 (5)0.0010 (5)0.0002 (5)
N10.0076 (6)0.0192 (7)0.0111 (7)0.0008 (5)0.0009 (5)0.0005 (5)
N20.0084 (6)0.0238 (8)0.0097 (7)0.0026 (5)0.0005 (5)0.0012 (5)
N30.0114 (7)0.0461 (12)0.0088 (7)0.0060 (8)0.0002 (6)0.0043 (7)
C10.0100 (7)0.0191 (8)0.0104 (7)0.0019 (6)0.0016 (6)0.0020 (6)
C20.0114 (7)0.0163 (8)0.0114 (7)0.0007 (6)0.0005 (6)0.0018 (6)
C30.0082 (7)0.0140 (8)0.0135 (8)0.0007 (6)0.0006 (6)0.0011 (6)
C40.0119 (7)0.0126 (7)0.0130 (8)0.0005 (6)0.0027 (6)0.0004 (6)
C50.0113 (7)0.0127 (7)0.0097 (7)0.0001 (5)0.0021 (6)0.0005 (5)
C60.0104 (7)0.0130 (7)0.0101 (7)0.0007 (6)0.0015 (5)0.0013 (6)
C70.0099 (7)0.0141 (8)0.0105 (7)0.0007 (5)0.0009 (6)0.0003 (5)
C80.0109 (7)0.0234 (9)0.0116 (8)0.0011 (7)0.0025 (6)0.0017 (7)
C90.0107 (7)0.0140 (8)0.0114 (7)0.0011 (6)0.0010 (6)0.0017 (6)
Geometric parameters (Å, º) top
Cl1—C31.7403 (19)C1—H1A0.9300
Cl2—C51.7436 (19)C2—C31.391 (3)
O1—C81.256 (2)C2—H2A0.9300
N1—C71.291 (2)C3—C41.381 (3)
N1—N21.377 (2)C4—C51.395 (3)
N2—C81.369 (2)C4—H4A0.9300
N2—H1N20.85 (3)C5—C61.398 (3)
N3—C81.339 (3)C6—C71.489 (3)
N3—H1N30.88 (4)C7—C91.503 (3)
N3—H2N30.81 (4)C9—H9A0.9600
C1—C21.392 (3)C9—H9B0.9600
C1—C61.399 (3)C9—H9C0.9600
C7—N1—N2117.12 (16)C4—C5—C6122.38 (17)
C8—N2—N1118.08 (16)C4—C5—Cl2116.02 (14)
C8—N2—H1N2113 (2)C6—C5—Cl2121.59 (15)
N1—N2—H1N2128 (2)C5—C6—C1116.83 (17)
C8—N3—H1N3115 (2)C5—C6—C7123.95 (17)
C8—N3—H2N3112 (3)C1—C6—C7119.21 (16)
H1N3—N3—H2N3131 (4)N1—C7—C6114.76 (16)
C2—C1—C6122.24 (17)N1—C7—C9124.43 (17)
C2—C1—H1A118.9C6—C7—C9120.65 (16)
C6—C1—H1A118.9O1—C8—N3122.71 (18)
C3—C2—C1118.53 (17)O1—C8—N2120.16 (18)
C3—C2—H2A120.7N3—C8—N2117.11 (18)
C1—C2—H2A120.7C7—C9—H9A109.5
C4—C3—C2121.52 (17)C7—C9—H9B109.5
C4—C3—Cl1118.62 (14)H9A—C9—H9B109.5
C2—C3—Cl1119.83 (15)C7—C9—H9C109.5
C3—C4—C5118.48 (17)H9A—C9—H9C109.5
C3—C4—H4A120.8H9B—C9—H9C109.5
C5—C4—H4A120.8
C7—N1—N2—C8173.82 (19)Cl2—C5—C6—C73.6 (3)
C6—C1—C2—C30.4 (3)C2—C1—C6—C51.6 (3)
C1—C2—C3—C40.7 (3)C2—C1—C6—C7177.46 (18)
C1—C2—C3—Cl1177.08 (15)N2—N1—C7—C6179.31 (17)
C2—C3—C4—C50.7 (3)N2—N1—C7—C94.0 (3)
Cl1—C3—C4—C5177.15 (14)C5—C6—C7—N1137.72 (19)
C3—C4—C5—C60.5 (3)C1—C6—C7—N143.3 (3)
C3—C4—C5—Cl2178.54 (15)C5—C6—C7—C946.8 (3)
C4—C5—C6—C11.6 (3)C1—C6—C7—C9132.2 (2)
Cl2—C5—C6—C1177.39 (15)N1—N2—C8—O1171.2 (2)
C4—C5—C6—C7177.37 (18)N1—N2—C8—N37.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.85 (3)2.07 (3)2.907 (2)168 (3)
N3—H2N3···O1ii0.81 (4)2.13 (4)2.924 (2)164 (4)
C9—H9A···O1iii0.962.593.465 (2)152
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H9Cl2N3O
Mr246.09
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)37.8079 (17), 3.8097 (2), 14.4920 (7)
β (°) 98.852 (2)
V3)2062.52 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.42 × 0.14 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.707, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
32124, 4202, 3654
Rint0.037
(sin θ/λ)max1)0.789
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.192, 1.11
No. of reflections4202
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)3.37, 0.82

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.85 (3)2.07 (3)2.907 (2)168 (3)
N3—H2N3···O1ii0.81 (4)2.13 (4)2.924 (2)164 (4)
C9—H9A···O1iii0.962.593.465 (2)151.9
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1/2; (iii) x, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India.

Acknowledgements

HKF and KBS thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KBS thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S. & Gupta, L. K. (2005). Spectrochim. Acta Part A, 62, 1089–1094.  CrossRef Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.  Google Scholar
First citationJain, V. K., Handa, A., Pandya, R., Shrivastav, P. & Agrawal, Y. K. (2002). React. Funct. Polym. 51, 101–110.  Web of Science CrossRef CAS Google Scholar
First citationPilgram, K. H. G. (1978). US Patent No. 4 108 399.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarren, J. D., Woodward, D. L. & Hargreaves, R. T. (1977). J. Med. Chem. 20, 1520–1521.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds