organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2099-o2100

1-Ethyl-2-tosyl-4,4,6-tri­methyl-2,3,3a,4-tetra­hydro-1H-pyrrolo[3,4-c]pyrano[6,5-b]quinoline-11(6H)-one monohydrate

aDepartment of Physics, Anna University Chennai, Chennai 600 025, India, bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: kali@annauniv.edu

(Received 8 July 2009; accepted 3 August 2009; online 8 August 2009)

In the title compound, C26H30N2O4S·H2O, the pyrrolidine and dihydro­pyran rings adopt envelope conformations and they are cis-fused. The sulfonyl group has a distorted tetra­hedral geometry. In the crystal structure, the mol­ecules are linked into a ribbon-like structure along the a axis by O/C—H⋯O hydrogen bonds involving water mol­ecules and C—H⋯π inter­actions involving the sulfonyl-bound phenyl ring. Adjacent ribbons are cross-linked via C—H⋯O hydrogen bonds involving a sulfonyl O atom and C—H⋯π inter­actions involving the pyridinone ring.

Related literature

For the biological activity of pyran­oquinolinones, see: Duraipandiyan & Ignacimuthu (2009[Duraipandiyan, V. & Ignacimuthu, S. (2009). J. Ethnopharmacol. 123, 494-498.]); Magedov et al. (2008[Magedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F., Evdokimov, N. M., Uglinskii, P. Y., Elias, E. M., Knee, E. J., Tongwa, P., Antipin, M. Y. & Kornienko, A. (2008). J. Med. Chem. 51, 2561-2570.]); Marco-Contelles et al. (2006[Marco-Contelles, J., Leon, R., Lopez, M. G., García, A. G. & Villarroya, M. (2006). Eur. J. Med. Chem. 41, 1464-1469.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271-383. New York: John Wiley.]). For a related structure, see: Chinnakali et al. (2007[Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4650-o4651.]).

[Scheme 1]

Experimental

Crystal data
  • C26H30N2O4S·H2O

  • Mr = 484.60

  • Triclinic, [P \overline 1]

  • a = 9.6964 (2) Å

  • b = 10.2315 (3) Å

  • c = 13.5500 (3) Å

  • α = 92.143 (1)°

  • β = 93.142 (1)°

  • γ = 115.703 (1)°

  • V = 1206.65 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.58 × 0.32 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.947

  • 32886 measured reflections

  • 10512 independent reflections

  • 9074 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.04

  • 10512 reflections

  • 320 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.94 (2) 1.86 (2) 2.7880 (10) 173 (2)
O1W—H2W1⋯O4 0.94 (2) 1.89 (2) 2.8247 (9) 171 (2)
C24—H24A⋯O4 0.97 2.31 3.0213 (11) 129
C24—H24B⋯O2 0.97 2.49 3.0748 (11) 119
C15—H15B⋯O1ii 0.96 2.42 3.3641 (11) 168
C26—H26C⋯O1Wiii 0.96 2.45 3.3333 (12) 152
C19—H19⋯Cg1iii 0.93 2.84 3.6777 (10) 151
C25—H25BCg2iv 0.96 2.79 3.5358 (12) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1. Cg1 and Cg2 are the centroids of the C8–C13 and N2/C6/C7/C23/C22/C17 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containg pyranoquinolone motifs exhibit antiproliferative and antitubulin activities (Magedov et al., 2008) and antibacterial and antifungal activities (Duraipandiyan & Ignacimuthu, 2009). Some of the pyranoquinoline derivatives have been found to block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals (Marco-Contelles et al., 2006). We report here the crystal structure of the title compound, a pyranoquinolinone derivative.

Bond lengths and angles in the title molecule (Fig. 1) are comparable to those observed in a related compound, trans-1-ethyl-4,4,10-trimethyl-2-tosyl- 1,2,3,3a,4,11b-hexahydro-11H-pyrrolo[3,4-c]pyrano[5,6-c]quinolin-11-one (Chinnakali et al., 2007). The pyrrolidine ring adopts an envelope conformation with C2, the envelope flap, lying 0.627 (1) Å from the plane defined by atoms N1, C1, C3 and C4. The asymmetry parameter (Duax et al., 1976) ΔCs[C2] is 5.85 (7)°, and puckering parameters (Cremer & Pople, 1975) q2 and ϕ are 0.4147 (8) Å and 79.52 (11)°, respectively. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The dihydropyran ring also adopts an envelope conformation, with atom C2 0.694 (1) Å out of the plane formed by the rest of the atoms of the ring. The smallest displacement asymmetry parameter ΔCs[C2] is 5.21 (7)°. The pyrrolidine ring is trans-fused to the dihydropyran ring. The quinoline ring system is planar (r.m.s. deviation 0.030 Å) with atoms O4 and C26 deviating from the mean plane by 0.043 (1) and 0.083 (1) Å, respectively. The sulfonyl group has a distorted tetrahedral geometry, with the O1—S1—O2 [120.48 (4)°] angle deviating significantly from ideal tetrahedral value. Intramolecular C—H···O hydrogen bonds generate S(6) and S(7) ring motifs.

In the crystal structure, centrosymmetrically related molecules are linked into a dimer by a pair of weak C—H···π interactions (Table 1) involving C19—H19 group and C18—C13 benzene ring (centroid Cg1). The dimers are linked into a ribbon like structure along the a axis (Fig. 2) by O—H···O and C—H···O hydrogen bonds involving the water molecules. The adjacent ribbons are cross-linked via C—H···O hydrogen bonds involving a sulfonyl O atom and C—H···π interactions involving the pyridinone ring.

Related literature top

For the biological activity of pyranoquinolinones, see: Duraipandiyan & Ignacimuthu (2009); Magedov et al. (2008); Marco-Contelles et al. (2006). For ring puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976). For a related structure, see: Chinnakali et al. (2007). Cg1 and Cg2 are the centroids of the C8–C13 and N2/C6/C7/C23/C22/C17 rings, respectively.

Experimental top

To a solution of 4-hydroxy-1-methylquinoline (1 mmol) in toluene (20 ml), the corresponding 2-(N-prenyl-N-tosylamino)acetaldehyde (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA, 1 mmol) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography using a hexane-ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

Water H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2–1.5(methyl) Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. View of a hydrogen-bonded ribbon in the title compound. Dashed and dotted lines indicate O/C—H···O and C—H···π interactions, respectively. For the sake of clarity, H atoms not involved in the interactions have been omitted.
1-Ethyl-2-tosyl-4,4,6-trimethyl-2,3,3a,4-tetrahydro-1H- pyrrolo[3,4-c]pyrano[6,5-b]quinoline-11(6H)-one monohydrate top
Crystal data top
C26H30N2O4S·H2OZ = 2
Mr = 484.60F(000) = 516
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6964 (2) ÅCell parameters from 9831 reflections
b = 10.2315 (3) Åθ = 2.4–40.2°
c = 13.5500 (3) ŵ = 0.17 mm1
α = 92.143 (1)°T = 100 K
β = 93.142 (1)°Block, colourless
γ = 115.703 (1)°0.58 × 0.32 × 0.32 mm
V = 1206.65 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10512 independent reflections
Radiation source: fine-focus sealed tube9074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 35.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1415
Tmin = 0.842, Tmax = 0.947k = 1616
32886 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.2725P]
where P = (Fo2 + 2Fc2)/3
10512 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C26H30N2O4S·H2Oγ = 115.703 (1)°
Mr = 484.60V = 1206.65 (5) Å3
Triclinic, P1Z = 2
a = 9.6964 (2) ÅMo Kα radiation
b = 10.2315 (3) ŵ = 0.17 mm1
c = 13.5500 (3) ÅT = 100 K
α = 92.143 (1)°0.58 × 0.32 × 0.32 mm
β = 93.142 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9074 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.947Rint = 0.022
32886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.57 e Å3
10512 reflectionsΔρmin = 0.39 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10550 (2)0.20102 (2)0.101937 (13)0.01815 (5)
O10.14482 (8)0.10439 (8)0.01424 (5)0.02588 (13)
O20.21397 (7)0.24814 (8)0.13802 (5)0.02463 (12)
O30.36172 (7)0.10968 (7)0.36629 (4)0.02095 (11)
O40.05379 (7)0.31969 (7)0.50127 (4)0.02048 (11)
N10.06215 (7)0.11918 (7)0.19027 (5)0.01627 (11)
N20.44953 (7)0.26770 (7)0.49833 (5)0.01623 (11)
C10.03179 (9)0.04091 (8)0.17054 (6)0.01816 (12)
H1A0.07280.06000.10620.022*
H1B0.02670.06310.17440.022*
C20.15833 (8)0.10586 (8)0.25395 (5)0.01455 (11)
H20.22760.20400.23700.017*
C30.07378 (8)0.12244 (7)0.34232 (5)0.01382 (11)
H30.01140.02540.36420.017*
C40.03588 (8)0.18134 (8)0.29580 (5)0.01449 (11)
H40.01660.28770.29760.017*
C50.25658 (8)0.02781 (8)0.27888 (5)0.01649 (12)
C60.32986 (8)0.19511 (8)0.42907 (5)0.01509 (11)
C70.19301 (8)0.20919 (8)0.42556 (5)0.01399 (11)
C80.06168 (9)0.35827 (9)0.08100 (5)0.01895 (13)
C90.09398 (10)0.48997 (9)0.13299 (6)0.02292 (14)
H90.02760.49570.17810.027*
C100.22655 (11)0.61223 (10)0.11634 (7)0.02546 (16)
H100.24820.70000.15090.031*
C110.32828 (10)0.60689 (10)0.04910 (6)0.02372 (15)
C120.29358 (11)0.47384 (11)0.00188 (6)0.02569 (16)
H120.36010.46810.04690.031*
C130.16132 (10)0.34970 (10)0.01340 (6)0.02375 (15)
H130.13960.26180.02110.028*
C140.47103 (12)0.74153 (12)0.03266 (8)0.03231 (19)
H14A0.44360.81790.01560.048*
H14B0.52210.72100.02030.048*
H14C0.53850.77160.09220.048*
C150.36409 (9)0.03800 (9)0.19901 (6)0.02084 (14)
H15A0.42360.13820.18670.031*
H15B0.30510.01430.13920.031*
H15C0.43150.00340.22070.031*
C160.16794 (11)0.12767 (9)0.30705 (7)0.02468 (15)
H16A0.11100.12860.36300.037*
H16B0.23850.16780.32380.037*
H16C0.09840.18490.25210.037*
C170.43494 (8)0.35304 (8)0.57565 (5)0.01535 (11)
C180.55160 (9)0.41818 (8)0.65335 (6)0.01901 (13)
H180.64130.40620.65290.023*
C190.53158 (10)0.49978 (9)0.73000 (6)0.02148 (14)
H190.60810.54150.78140.026*
C200.39817 (10)0.52082 (9)0.73172 (6)0.02210 (14)
H200.38710.57770.78300.027*
C210.28324 (9)0.45606 (8)0.65626 (6)0.01910 (13)
H210.19410.46900.65740.023*
C220.29908 (8)0.37079 (8)0.57767 (5)0.01509 (11)
C230.17397 (8)0.30031 (8)0.50003 (5)0.01469 (11)
C240.19016 (9)0.13330 (9)0.34164 (6)0.01990 (13)
H24A0.17060.15840.41240.024*
H24B0.24270.18720.31420.024*
C250.29541 (11)0.02827 (11)0.32456 (9)0.0329 (2)
H25A0.38930.05010.35510.049*
H25B0.24570.08280.35310.049*
H25C0.31770.05400.25470.049*
C260.59115 (9)0.24915 (10)0.49227 (6)0.02184 (14)
H26A0.60640.23470.42410.033*
H26B0.58250.16610.52700.033*
H26C0.67690.33450.52180.033*
O1W0.07659 (8)0.54423 (7)0.37852 (5)0.02352 (12)
H1W10.039 (2)0.5967 (19)0.4179 (14)0.057 (5)*
H2W10.0587 (19)0.4646 (19)0.4169 (13)0.050 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01901 (8)0.02528 (9)0.01322 (8)0.01303 (7)0.00226 (6)0.00017 (6)
O10.0270 (3)0.0342 (3)0.0153 (2)0.0138 (3)0.0065 (2)0.0055 (2)
O20.0232 (3)0.0363 (3)0.0231 (3)0.0210 (3)0.0015 (2)0.0048 (2)
O30.0222 (2)0.0308 (3)0.0164 (2)0.0188 (2)0.00380 (19)0.0072 (2)
O40.0218 (2)0.0277 (3)0.0182 (2)0.0173 (2)0.00107 (19)0.0039 (2)
N10.0196 (3)0.0198 (3)0.0127 (2)0.0121 (2)0.00137 (19)0.00144 (19)
N20.0152 (2)0.0210 (3)0.0139 (2)0.0096 (2)0.00049 (19)0.0008 (2)
C10.0211 (3)0.0210 (3)0.0157 (3)0.0133 (3)0.0028 (2)0.0045 (2)
C20.0162 (3)0.0165 (3)0.0131 (3)0.0094 (2)0.0002 (2)0.0011 (2)
C30.0146 (3)0.0156 (3)0.0129 (3)0.0084 (2)0.0002 (2)0.0003 (2)
C40.0159 (3)0.0169 (3)0.0125 (3)0.0092 (2)0.0000 (2)0.0004 (2)
C50.0183 (3)0.0195 (3)0.0145 (3)0.0114 (2)0.0008 (2)0.0026 (2)
C60.0164 (3)0.0187 (3)0.0125 (3)0.0100 (2)0.0004 (2)0.0000 (2)
C70.0153 (3)0.0166 (3)0.0121 (2)0.0091 (2)0.0004 (2)0.0000 (2)
C80.0236 (3)0.0244 (3)0.0131 (3)0.0144 (3)0.0010 (2)0.0019 (2)
C90.0298 (4)0.0248 (3)0.0205 (3)0.0175 (3)0.0048 (3)0.0022 (3)
C100.0327 (4)0.0237 (4)0.0243 (4)0.0162 (3)0.0032 (3)0.0020 (3)
C110.0262 (4)0.0277 (4)0.0190 (3)0.0132 (3)0.0007 (3)0.0058 (3)
C120.0275 (4)0.0329 (4)0.0183 (3)0.0143 (3)0.0049 (3)0.0017 (3)
C130.0275 (4)0.0293 (4)0.0166 (3)0.0145 (3)0.0037 (3)0.0018 (3)
C140.0295 (4)0.0321 (4)0.0327 (5)0.0105 (4)0.0027 (4)0.0084 (4)
C150.0212 (3)0.0283 (4)0.0173 (3)0.0152 (3)0.0013 (2)0.0035 (3)
C160.0272 (4)0.0210 (3)0.0313 (4)0.0152 (3)0.0039 (3)0.0051 (3)
C170.0167 (3)0.0160 (3)0.0129 (3)0.0068 (2)0.0006 (2)0.0014 (2)
C180.0179 (3)0.0199 (3)0.0165 (3)0.0062 (2)0.0020 (2)0.0009 (2)
C190.0241 (3)0.0198 (3)0.0163 (3)0.0064 (3)0.0033 (3)0.0011 (2)
C200.0283 (4)0.0217 (3)0.0154 (3)0.0107 (3)0.0014 (3)0.0031 (2)
C210.0235 (3)0.0200 (3)0.0150 (3)0.0109 (3)0.0003 (2)0.0019 (2)
C220.0179 (3)0.0159 (3)0.0122 (3)0.0082 (2)0.0004 (2)0.0002 (2)
C230.0178 (3)0.0164 (3)0.0121 (3)0.0096 (2)0.0009 (2)0.0007 (2)
C240.0169 (3)0.0283 (4)0.0175 (3)0.0126 (3)0.0023 (2)0.0020 (3)
C250.0183 (3)0.0290 (4)0.0507 (6)0.0084 (3)0.0073 (4)0.0134 (4)
C260.0175 (3)0.0314 (4)0.0204 (3)0.0147 (3)0.0009 (2)0.0011 (3)
O1W0.0259 (3)0.0248 (3)0.0238 (3)0.0147 (2)0.0038 (2)0.0016 (2)
Geometric parameters (Å, º) top
S1—O21.4341 (6)C12—C131.3916 (13)
S1—O11.4389 (6)C12—H120.93
S1—N11.6234 (6)C13—H130.93
S1—C81.7661 (8)C14—H14A0.96
O3—C61.3381 (9)C14—H14B0.96
O3—C51.4821 (9)C14—H14C0.96
O4—C231.2648 (9)C15—H15A0.96
N1—C11.4784 (9)C15—H15B0.96
N1—C41.5052 (9)C15—H15C0.96
N2—C61.3637 (9)C16—H16A0.96
N2—C171.3911 (9)C16—H16B0.96
N2—C261.4716 (10)C16—H16C0.96
C1—C21.5196 (10)C17—C221.4071 (10)
C1—H1A0.97C17—C181.4126 (10)
C1—H1B0.97C18—C191.3825 (11)
C2—C51.5179 (10)C18—H180.93
C2—C31.5321 (10)C19—C201.4017 (12)
C2—H20.98C19—H190.93
C3—C71.5128 (10)C20—C211.3822 (11)
C3—C41.5499 (10)C20—H200.93
C3—H30.98C21—C221.4084 (10)
C4—C241.5337 (10)C21—H210.93
C4—H40.98C22—C231.4640 (10)
C5—C151.5187 (11)C24—C251.5198 (13)
C5—C161.5201 (11)C24—H24A0.97
C6—C71.3940 (10)C24—H24B0.97
C7—C231.4216 (10)C25—H25A0.96
C8—C131.3944 (11)C25—H25B0.96
C8—C91.3960 (11)C25—H25C0.96
C9—C101.3878 (13)C26—H26A0.96
C9—H90.93C26—H26B0.96
C10—C111.3956 (13)C26—H26C0.96
C10—H100.93O1W—H1W10.933 (18)
C11—C121.3965 (13)O1W—H2W10.940 (18)
C11—C141.5053 (13)
O2—S1—O1120.48 (4)C11—C12—H12119.4
O2—S1—N1106.96 (4)C12—C13—C8119.38 (8)
O1—S1—N1106.25 (4)C12—C13—H13120.3
O2—S1—C8107.39 (4)C8—C13—H13120.3
O1—S1—C8107.16 (4)C11—C14—H14A109.5
N1—S1—C8108.10 (4)C11—C14—H14B109.5
C6—O3—C5122.23 (6)H14A—C14—H14B109.5
C1—N1—C4112.20 (5)C11—C14—H14C109.5
C1—N1—S1119.56 (5)H14A—C14—H14C109.5
C4—N1—S1120.20 (5)H14B—C14—H14C109.5
C6—N2—C17120.21 (6)C5—C15—H15A109.5
C6—N2—C26118.97 (6)C5—C15—H15B109.5
C17—N2—C26120.77 (6)H15A—C15—H15B109.5
N1—C1—C2101.53 (5)C5—C15—H15C109.5
N1—C1—H1A111.5H15A—C15—H15C109.5
C2—C1—H1A111.5H15B—C15—H15C109.5
N1—C1—H1B111.5C5—C16—H16A109.5
C2—C1—H1B111.5C5—C16—H16B109.5
H1A—C1—H1B109.3H16A—C16—H16B109.5
C5—C2—C1118.88 (6)C5—C16—H16C109.5
C5—C2—C3112.23 (6)H16A—C16—H16C109.5
C1—C2—C3103.40 (6)H16B—C16—H16C109.5
C5—C2—H2107.2N2—C17—C22119.09 (6)
C1—C2—H2107.2N2—C17—C18121.27 (7)
C3—C2—H2107.2C22—C17—C18119.61 (7)
C7—C3—C2107.88 (5)C19—C18—C17119.61 (7)
C7—C3—C4120.70 (6)C19—C18—H18120.2
C2—C3—C4102.90 (5)C17—C18—H18120.2
C7—C3—H3108.2C18—C19—C20121.29 (7)
C2—C3—H3108.2C18—C19—H19119.4
C4—C3—H3108.2C20—C19—H19119.4
N1—C4—C24109.79 (6)C21—C20—C19119.20 (7)
N1—C4—C3102.05 (5)C21—C20—H20120.4
C24—C4—C3115.58 (6)C19—C20—H20120.4
N1—C4—H4109.7C20—C21—C22120.98 (7)
C24—C4—H4109.7C20—C21—H21119.5
C3—C4—H4109.7C22—C21—H21119.5
O3—C5—C2106.88 (6)C17—C22—C21119.29 (7)
O3—C5—C15103.73 (6)C17—C22—C23120.83 (6)
C2—C5—C15112.07 (6)C21—C22—C23119.88 (7)
O3—C5—C16106.72 (6)O4—C23—C7122.29 (7)
C2—C5—C16114.79 (6)O4—C23—C22120.33 (6)
C15—C5—C16111.75 (6)C7—C23—C22117.37 (6)
O3—C6—N2111.07 (6)C25—C24—C4114.19 (7)
O3—C6—C7125.22 (6)C25—C24—H24A108.7
N2—C6—C7123.71 (6)C4—C24—H24A108.7
C6—C7—C23118.59 (6)C25—C24—H24B108.7
C6—C7—C3116.49 (6)C4—C24—H24B108.7
C23—C7—C3124.90 (6)H24A—C24—H24B107.6
C13—C8—C9120.45 (8)C24—C25—H25A109.5
C13—C8—S1119.77 (6)C24—C25—H25B109.5
C9—C8—S1119.77 (6)H25A—C25—H25B109.5
C10—C9—C8119.05 (8)C24—C25—H25C109.5
C10—C9—H9120.5H25A—C25—H25C109.5
C8—C9—H9120.5H25B—C25—H25C109.5
C9—C10—C11121.74 (8)N2—C26—H26A109.5
C9—C10—H10119.1N2—C26—H26B109.5
C11—C10—H10119.1H26A—C26—H26B109.5
C10—C11—C12118.13 (8)N2—C26—H26C109.5
C10—C11—C14120.43 (9)H26A—C26—H26C109.5
C12—C11—C14121.44 (8)H26B—C26—H26C109.5
C13—C12—C11121.24 (8)H1W1—O1W—H2W1100.8 (14)
C13—C12—H12119.4
O2—S1—N1—C1171.79 (6)C2—C3—C7—C23151.18 (7)
O1—S1—N1—C141.91 (7)C4—C3—C7—C2333.50 (10)
C8—S1—N1—C172.84 (6)O2—S1—C8—C13155.91 (7)
O2—S1—N1—C441.83 (7)O1—S1—C8—C1325.14 (8)
O1—S1—N1—C4171.71 (6)N1—S1—C8—C1389.01 (7)
C8—S1—N1—C473.54 (6)O2—S1—C8—C924.75 (8)
C4—N1—C1—C220.95 (8)O1—S1—C8—C9155.53 (7)
S1—N1—C1—C2127.93 (6)N1—S1—C8—C990.33 (7)
N1—C1—C2—C5163.47 (6)C13—C8—C9—C100.08 (12)
N1—C1—C2—C338.34 (7)S1—C8—C9—C10179.42 (7)
C5—C2—C3—C759.85 (7)C8—C9—C10—C110.04 (13)
C1—C2—C3—C7170.83 (6)C9—C10—C11—C120.07 (13)
C5—C2—C3—C4171.52 (6)C9—C10—C11—C14179.94 (8)
C1—C2—C3—C442.20 (7)C10—C11—C12—C130.14 (13)
C1—N1—C4—C24127.76 (7)C14—C11—C12—C13179.87 (8)
S1—N1—C4—C2483.59 (7)C11—C12—C13—C80.10 (13)
C1—N1—C4—C34.66 (8)C9—C8—C13—C120.02 (13)
S1—N1—C4—C3153.32 (5)S1—C8—C13—C12179.35 (7)
C7—C3—C4—N1148.43 (6)C6—N2—C17—C224.08 (10)
C2—C3—C4—N128.27 (7)C26—N2—C17—C22178.58 (7)
C7—C3—C4—C2492.49 (8)C6—N2—C17—C18173.96 (7)
C2—C3—C4—C24147.35 (6)C26—N2—C17—C183.38 (11)
C6—O3—C5—C223.11 (9)N2—C17—C18—C19178.65 (7)
C6—O3—C5—C15141.69 (7)C22—C17—C18—C190.62 (11)
C6—O3—C5—C16100.17 (8)C17—C18—C19—C200.76 (12)
C1—C2—C5—O3176.29 (6)C18—C19—C20—C211.36 (12)
C3—C2—C5—O355.54 (8)C19—C20—C21—C220.58 (12)
C1—C2—C5—C1570.71 (9)N2—C17—C22—C21179.45 (7)
C3—C2—C5—C15168.54 (6)C18—C17—C22—C211.38 (10)
C1—C2—C5—C1658.17 (9)N2—C17—C22—C230.26 (10)
C3—C2—C5—C1662.58 (8)C18—C17—C22—C23177.81 (7)
C5—O3—C6—N2174.90 (6)C20—C21—C22—C170.78 (11)
C5—O3—C6—C75.28 (11)C20—C21—C22—C23178.41 (7)
C17—N2—C6—O3174.60 (6)C6—C7—C23—O4179.29 (7)
C26—N2—C6—O32.79 (10)C3—C7—C23—O41.91 (11)
C17—N2—C6—C75.22 (11)C6—C7—C23—C221.63 (10)
C26—N2—C6—C7177.39 (7)C3—C7—C23—C22177.18 (6)
O3—C6—C7—C23177.57 (7)C17—C22—C23—O4178.34 (7)
N2—C6—C7—C232.22 (11)C21—C22—C23—O42.47 (11)
O3—C6—C7—C31.33 (11)C17—C22—C23—C72.55 (10)
N2—C6—C7—C3178.88 (6)C21—C22—C23—C7176.63 (7)
C2—C3—C7—C630.00 (8)N1—C4—C24—C2547.81 (9)
C4—C3—C7—C6147.68 (7)C3—C4—C24—C2566.92 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.94 (2)1.86 (2)2.7880 (10)173 (2)
O1W—H2W1···O40.94 (2)1.89 (2)2.8247 (9)171 (2)
C24—H24A···O40.972.313.0213 (11)129
C24—H24B···O20.972.493.0748 (11)119
C15—H15B···O1ii0.962.423.3641 (11)168
C26—H26C···O1Wiii0.962.453.3333 (12)152
C19—H19···Cg1iii0.932.843.6777 (10)151
C25—H25B···Cg2iv0.962.793.5358 (12)135
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H30N2O4S·H2O
Mr484.60
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6964 (2), 10.2315 (3), 13.5500 (3)
α, β, γ (°)92.143 (1), 93.142 (1), 115.703 (1)
V3)1206.65 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.58 × 0.32 × 0.32
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.842, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
32886, 10512, 9074
Rint0.022
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.04
No. of reflections10512
No. of parameters320
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.94 (2)1.86 (2)2.7880 (10)173 (2)
O1W—H2W1···O40.94 (2)1.89 (2)2.8247 (9)171 (2)
C24—H24A···O40.972.313.0213 (11)129
C24—H24B···O20.972.493.0748 (11)119
C15—H15B···O1ii0.962.423.3641 (11)168
C26—H26C···O1Wiii0.962.453.3333 (12)152
C19—H19···Cg1iii0.932.843.6777 (10)151
C25—H25B···Cg2iv0.962.793.5358 (12)135
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
 

Footnotes

Working at: Department of Physics R.M.K Engineering Collge R.S.M Nagar, Kavaraipettai 601 206, Tamil Nadu, India.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, o4650–o4651.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationDuraipandiyan, V. & Ignacimuthu, S. (2009). J. Ethnopharmacol. 123, 494–498.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMagedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F., Evdokimov, N. M., Uglinskii, P. Y., Elias, E. M., Knee, E. J., Tongwa, P., Antipin, M. Y. & Kornienko, A. (2008). J. Med. Chem. 51, 2561–2570.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarco-Contelles, J., Leon, R., Lopez, M. G., García, A. G. & Villarroya, M. (2006). Eur. J. Med. Chem. 41, 1464–1469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2099-o2100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds