inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs2Bi(PO4)(WO4)

aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska Street, 01601 Kyiv, Ukraine, and bSTC `Institute for Single Crystals', NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: Tereb@bigmir.net

(Received 17 July 2009; accepted 10 August 2009; online 15 August 2009)

Dicaesium bis­muth(III) phosphate(V) tungstate(VI), Cs2Bi(PO4)(WO4), has been synthesized during complex investigation in a molten pseudo-quaternary Cs2O–Bi2O3–P2O5–WO3 system. It is isotypic with K2Bi(PO4)(WO4). The three-dimensional framework is built up from [Bi(PO4)(WO4)] nets, which are organized by adhesion of [BiPO4] layers and [WO4] tetra­hedra above and below of those layers. The inter­stitial space is occupied by Cs atoms. Bi, W and P atoms lie on crystallographic twofold axes.

Related literature

For the isotypic potassium analogue, see: Zatovsky et al. (2006[Zatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Acta Cryst. E62, i193-i195.]). For a related structure, see: Terebilenko et al. (2008[Terebilenko, K. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2008). Acta Cryst. E64, i75.]). For caesium coordination, see Borel et al. (2000[Borel, M. M., Leclaire, A., Chardon, J. & Raveau, B. (2000). Int. J. Inorg. Mater. 2, 11-19.]); Yakubovich et al. (2006[Yakubovich, O. V., Massa, W. & Dimitrova, O. V. (2006). Solid State Sci. 8, 71-76.])

Experimental

Crystal data
  • Cs2Bi(PO4)(WO4)

  • Mr = 817.61

  • Orthorhombic, I b c a

  • a = 21.3144 (10) Å

  • b = 12.6352 (5) Å

  • c = 7.1412 (3) Å

  • V = 1923.21 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 37.87 mm−1

  • T = 293 K

  • 0.08 × 0.07 × 0.05 mm

Data collection
  • Oxford Diffraction XCalibur-3 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.061, Tmax = 0.174 (expected range = 0.053–0.151)

  • 10697 measured reflections

  • 1396 independent reflections

  • 1227 reflections with I > 2σ(I)

  • Rint = 0.156

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.115

  • S = 1.21

  • 1396 reflections

  • 61 parameters

  • Δρmax = 2.17 e Å−3

  • Δρmin = −2.63 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—O2 2.388 (8)
Bi1—O1i 2.389 (8)
Bi1—O3ii 2.463 (8)
Bi1—O1iii 2.669 (8)
Cs1—O2ii 2.990 (8)
Cs1—O4iv 3.031 (9)
Cs1—O2i 3.046 (8)
Cs1—O3v 3.088 (9)
Cs1—O4vi 3.111 (10)
Cs1—O4vii 3.140 (9)
Cs1—O1 3.338 (9)
Cs1—O3vii 3.339 (9)
W1—O4 1.774 (9)
W1—O3vi 1.792 (9)
P1—O1 1.539 (8)
P1—O1ii 1.539 (8)
P1—O2ii 1.549 (8)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, -z]; (iii) [x, y-{\script{1\over 2}}, -z]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y+1, -z+{\script{1\over 2}}]; (vii) [x, y+{\script{1\over 2}}, -z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Chemistry of caesium phosphates shows a great diversity due to its structural flexibility in adopting different coordination environment. In metal phosphates caesium resides generally in complex polyhedron with up to fourteen vertices providing formation of two- and three-dimensional frameworks. Depending on crystal structure caesium is believed to occupy big cavities and tunnels adapting their geometry. For instance, the structure of Cs3Mo8O11(PO4)8 (Borel et al., 2000) represents two types of irregular surrounding with nine and ten oxygen coordination, Cs2Ti(VO2)3(PO4)3 (Yakubovich et al.,2006) - twelve and fourteen. Herein, the structure of K2Bi(PO4)(WO4) (Zatovsky et al., 2006) represents an interesting host for substitution of potassium atoms by caesium ones, that leads to formation of the first example of caesium-containing phosphate-tungstate Cs2Bi(PO4)(WO4) (Fig 1). Three-dimensional framework of the title compound is organized by linking together [Bi(PO4)(WO4)] nets which are formed by adhesion [BiPO4] layers and WO4 tetrahedra above and below of those layers (Fig. 2). Both phosphate and tungstate tetrahedra have almost regular geometry with typical bond lengths. Caesium atom resides in interlayer space having eightfold coordination duplicating potassium ones' environment in the structure of K2Bi(PO4)(WO4) (Zatovsky et al., 2006). Due to bigger ionic radius of Cs, the distance between two successive nets (a half of a cell dimension a) is 10.657 Å, while for K-analogue is 9.862 Å.

Related literature top

For related structures, see: Zatovsky et al. (2006); Terebilenko et al. (2008). For a description of caesium coordination, see Borel et al. (2000); Yakubovich et al. (2006)

Experimental top

Single crystals of the title compound were obtained during investigation in the pseudo-quaternary molten system Cs2O—Bi2O3—P2O5—WO3. A mixture of CsPO3 (1.060 g), Cs2W2O7 (3.725 g) and Bi2O3 (0.840 g) were mixed in an agate mortar, and heated in a platinum crucible up to 1223 K to obtain a homogeneous melt. It was held at this temperature for an hour and cooled down with a rate of 40 K h-1 to 833 K. Crystalline product was leached out from the solidified melt with hot water.

Refinement top

Convergence factors (R, wR) and Rint are high due to low intensity of the reflections which is connected with poor quality of crystals. Experiments were carried out for several crystals from different synthetic points, unfortunately, better results than is presented were not found. Taking into account the previous structures isotypic to titled compound there is no doubts in structure determination.

The highest peak and the deepest hole in the final difference map are located at 0.77Å from P1 (2.173 e/Å3) and 0.70Å from P2 (-2.633 e/Å3) respectively.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of Cs2Bi(PO4)(WO4).
Dicaesium bismuth(III) phosphate(V) tungstate(VI) top
Crystal data top
Cs2Bi(PO4)(WO4)F(000) = 2768
Mr = 817.61Dx = 5.648 Mg m3
Orthorhombic, IbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2b 2cCell parameters from 10697 reflections
a = 21.3144 (10) Åθ = 3.2–30.0°
b = 12.6352 (5) ŵ = 37.87 mm1
c = 7.1412 (3) ÅT = 293 K
V = 1923.21 (14) Å3Prism, colourless
Z = 80.08 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction XCalibur-3
diffractometer
1396 independent reflections
Radiation source: fine-focus sealed tube1227 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.156
ϕ and ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2729
Tmin = 0.061, Tmax = 0.174k = 1717
10697 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.052Secondary atom site location: difference Fourier map
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0396P)2 + 22.3992P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
1396 reflectionsΔρmax = 2.17 e Å3
61 parametersΔρmin = 2.63 e Å3
Crystal data top
Cs2Bi(PO4)(WO4)V = 1923.21 (14) Å3
Mr = 817.61Z = 8
Orthorhombic, IbcaMo Kα radiation
a = 21.3144 (10) ŵ = 37.87 mm1
b = 12.6352 (5) ÅT = 293 K
c = 7.1412 (3) Å0.08 × 0.07 × 0.05 mm
Data collection top
Oxford Diffraction XCalibur-3
diffractometer
1396 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1227 reflections with I > 2σ(I)
Tmin = 0.061, Tmax = 0.174Rint = 0.156
10697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0396P)2 + 22.3992P]
where P = (Fo2 + 2Fc2)/3
S = 1.21Δρmax = 2.17 e Å3
1396 reflectionsΔρmin = 2.63 e Å3
61 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.250.58662 (4)00.01381 (17)
Cs10.09029 (3)0.83471 (6)0.21999 (11)0.0233 (2)
W10.09279 (3)0.50.250.01566 (18)
P10.250.8232 (3)00.0081 (6)
O10.2413 (4)0.8984 (6)0.1675 (11)0.0204 (17)
O20.3072 (4)0.7487 (6)0.0220 (11)0.0173 (15)
O30.1403 (4)0.5328 (8)0.0513 (13)0.0258 (18)
O40.0440 (4)0.3925 (8)0.1847 (13)0.031 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.0116 (3)0.0135 (3)0.0162 (3)00.00033 (18)0
Cs10.0166 (4)0.0290 (4)0.0243 (4)0.0014 (3)0.0003 (2)0.0005 (3)
W10.0107 (3)0.0162 (3)0.0201 (3)000.0007 (2)
P10.0077 (15)0.0086 (13)0.0080 (15)00.0014 (10)0
O10.034 (5)0.015 (3)0.012 (4)0.004 (3)0.002 (3)0.003 (3)
O20.013 (4)0.017 (3)0.021 (4)0.001 (3)0.000 (3)0.003 (3)
O30.013 (4)0.036 (5)0.028 (4)0.007 (4)0.004 (3)0.006 (4)
O40.020 (5)0.032 (5)0.040 (5)0.013 (4)0.007 (4)0.013 (4)
Bond lengths (Å) top
Bi1—O22.388 (8)Cs1—O4viii3.111 (10)
Bi1—O2i2.388 (8)Cs1—O4ix3.140 (9)
Bi1—O1ii2.389 (8)Cs1—O13.338 (9)
Bi1—O1iii2.389 (8)Cs1—O3ix3.339 (9)
Bi1—O3i2.463 (8)W1—O41.774 (9)
Bi1—O32.463 (8)W1—O4viii1.774 (9)
Bi1—O1iv2.669 (8)W1—O3viii1.792 (9)
Bi1—O1v2.669 (8)W1—O31.792 (9)
Cs1—O2i2.990 (8)P1—O11.539 (8)
Cs1—O4vi3.031 (9)P1—O1i1.539 (8)
Cs1—O2ii3.046 (8)P1—O2i1.549 (8)
Cs1—O3vii3.088 (9)P1—O21.549 (8)
Symmetry codes: (i) x+1/2, y, z; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y1/2, z; (v) x+1/2, y1/2, z; (vi) x, y+1/2, z+1/2; (vii) x, y+3/2, z+1/2; (viii) x, y+1, z+1/2; (ix) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaCs2Bi(PO4)(WO4)
Mr817.61
Crystal system, space groupOrthorhombic, Ibca
Temperature (K)293
a, b, c (Å)21.3144 (10), 12.6352 (5), 7.1412 (3)
V3)1923.21 (14)
Z8
Radiation typeMo Kα
µ (mm1)37.87
Crystal size (mm)0.08 × 0.07 × 0.05
Data collection
DiffractometerOxford Diffraction XCalibur-3
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.061, 0.174
No. of measured, independent and
observed [I > 2σ(I)] reflections
10697, 1396, 1227
Rint0.156
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.115, 1.21
No. of reflections1396
No. of parameters61
w = 1/[σ2(Fo2) + (0.0396P)2 + 22.3992P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.17, 2.63

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Bi1—O22.388 (8)Cs1—O4vii3.140 (9)
Bi1—O1i2.389 (8)Cs1—O13.338 (9)
Bi1—O3ii2.463 (8)Cs1—O3vii3.339 (9)
Bi1—O1iii2.669 (8)W1—O41.774 (9)
Cs1—O2ii2.990 (8)W1—O3vi1.792 (9)
Cs1—O4iv3.031 (9)P1—O11.539 (8)
Cs1—O2i3.046 (8)P1—O1ii1.539 (8)
Cs1—O3v3.088 (9)P1—O2ii1.549 (8)
Cs1—O4vi3.111 (10)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y, z; (iii) x, y1/2, z; (iv) x, y+1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x, y+1/2, z.
 

Acknowledgements

The authors acknowledge the ICDD for financial support (grant No. 03–02).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorel, M. M., Leclaire, A., Chardon, J. & Raveau, B. (2000). Int. J. Inorg. Mater. 2, 11–19.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerebilenko, K. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S. & Shishkin, O. V. (2008). Acta Cryst. E64, i75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYakubovich, O. V., Massa, W. & Dimitrova, O. V. (2006). Solid State Sci. 8, 71–76.  Web of Science CrossRef CAS Google Scholar
First citationZatovsky, I. V., Terebilenko, K. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). Acta Cryst. E62, i193–i195.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds