metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyridine)tri­fluorido­chromium(III) dihydrate

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, and Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wj-crystal@163.com

(Received 6 August 2009; accepted 12 August 2009; online 19 August 2009)

The title compound, [CrF3(C10H8N2)(H2O)]·2H2O, was prepared by the reaction of CrF3 and 2,2′-bipyridine under hydrous conditions. The metal centre is coordinated in a distorted octahedral mode by two N atoms from the organic ligand, three F atoms and one O atom of a water molecule. . The crystal packing is stabilized by O—H⋯O and O—H⋯F hydrogen-bonding contacts, which form a one-dimensional belt extending parallel to (100).

Related literature

For anion structures, see: Kumar et al. (2007[Kumar, D. K., Das, A. & Dastidar, P. (2007). CrystEngComm, 9, 548-555.]); Krishnan et al. (2007[Krishnan, S. M., Patel, N. M., Knapp, W. R. & Supkowski, R. M. (2007). CrystEngComm, 9, 503-514.]); Wu et al. (2007[Wu, L. M., Teng, H. B., Feng, X. C. & Ke, X. B. (2007). Cryst. Growth Des. 7, 1337-1342.]); Dong et al. (2005[Dong, Y. B., Wang, H. Y., Ma, J. P. & Huang, R. Q. (2005). Cryst. Growth Des. 2, 789-800.]). For related structures, see: Timco et al. (2005[Timco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649-3651.]); Larsen et al. (2003[Larsen, F. K., Overgaard, J., Parsons, S., Rentschler, E., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed. 42, 5978-5981.]); Ochsenbein et al. (2008[Ochsenbein, S. T., Tuna, F., Rancan, M., Davies, R. S. G., Muryn, C. A., Waldmann, O., Bircher, R., Sieber, A., Carver, G., Mutka, H., Fernandez-Alonso, F., Podlesnyak, A., Engelhardt, L. P., Timco, G. A., Güdel, H. U. & Winpenny, R. E. P. (2008). Chem. Eur. J. 14, 5144-5158.]).

[Scheme 1]

Experimental

Crystal data
  • [CrF3(C10H8N2)(H2O)]·2H2O

  • Mr = 319.23

  • Monoclinic, P 21 /c

  • a = 9.0100 (18) Å

  • b = 7.4170 (15) Å

  • c = 20.759 (6) Å

  • β = 112.35 (3)°

  • V = 1283.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.24 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6478 measured reflections

  • 2257 independent reflections

  • 1916 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.129

  • S = 1.12

  • 2257 reflections

  • 175 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯F1 0.85 2.22 2.699 (3) 116
O1W—H2W1⋯F2i 0.85 2.02 2.567 (3) 121
O1W—H2W1⋯F2i 0.85 2.02 2.567 (3) 121
O1W—H1W1⋯F1ii 0.85 1.97 2.550 (3) 125
O2W—H1W2⋯F3ii 0.85 2.10 2.664 (4) 124
O2W—H2W2⋯O3Wiii 0.85 2.33 2.730 (5) 110
O3W—H2W3⋯F2iv 0.80 1.98 2.767 (3) 171
O3W—H1W3⋯O3Wv 0.84 2.18 2.748 (7) 125
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent, the aspect of anion attracts much research interesting in coordination chemistry, like X-, NO3-(Kumar et al., 2007), BF4-, ClO4-(Krishnan et al., 2007), SO32-(Wu et al., 2007). The anion components facilely either coordinate to metal atoms or fill the vacancy of Metal-organic frameworks, and intensively influence the supramolecular framework by hydrogen bonding and electrostatic interactions. But the study of F- anion is still deficient. Because the HF strong acid easily attacks the glass surface and creates SiF62- in the synthetical progress. Here we describe the synthesis and structure of the title Cr compound coordinating with F atom.

The title structure (Fig. 1) was build up of one Cr atom, one 2,2,-bipyridine ligand, three coordination F atoms, one coordination water molecule and two free water molecules. Cr atom is coordinated with two N atoms from 2,2'-bipyridine ligand, three F atoms, one water molecule, presenting a distorted octahedron geometry. The mean Cr—N, Cr—O and Cr—F bond lengths are similar to the reported (Timco et al., 2005, Larsen et al., 2003 & Ochsenbein et al., 2008). The torsion angles of C1—N1—Cr1—O1w, C10—N2—Cr1—F3 are 4.13 (2) and -4.25 (2)°,respectively.

The free water molecules link each other by intermolecular O—H···O hydrogen bonds. And F atoms contact with water molecules via intermolecular O—H···F hydrogen bonds (Table 2). The hydrogen-bonding interactions display as the one-dimensional belt linking the the crystal packing as shown in Fig. 2.

Related literature top

For anion structures, see: Kumar et al. (2007); Krishnan et al. (2007); Wu et al. (2007); Dong et al. (2005). For related structures, see: Timco et al. (2005); Larsen et al. (2003); Ochsenbein et al. (2008).

Experimental top

All commercially obtained reagent-grade chemicals were used without further purification. The novelty Cr(OH)3 was prepared by mixture CrCl3 6H2O (5.33 g, 20 mmol) with NaOH (2.40 g, 60 mmol) in water solution. After filtered and washed with water, Cr(OH)3 was added to hydrofluoric acid (1.20 g, 60 mmol). The stirring did not stop until the solid dissolved completely. The CrF3 solution was obtained after increasing the pH value from 5 to 7. Ten drops of prepared CrF3 solution were added in the solution of 2,2'-bipyridine (0.48 g, 3 mmol) in water and methanol (3:1 v/v, 40 ml). The resulting solution was refluxed for 2 h and filtered. The brown prism crystals were collected, after cooling and filtering (yield 1.10 g).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H and O-H distances of 0.93–0.96 and 0.85 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing view of the molecules of (I) along the crystallographic b direction.
Aqua(2,2'-bipyridine)trifluoridochromium(III) dihydrate top
Crystal data top
[CrF3(C10H8N2)(H2O)]·2H2OF(000) = 652
Mr = 319.23Dx = 1.653 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1024 reflections
a = 9.0100 (18) Åθ = 2.4–25.0°
b = 7.4170 (15) ŵ = 0.93 mm1
c = 20.759 (6) ÅT = 293 K
β = 112.35 (3)°Prism, brown
V = 1283.1 (5) Å30.24 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 1010
6478 measured reflectionsk = 88
2257 independent reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.6391P]
where P = (Fo2 + 2Fc2)/3
2257 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.56 e Å3
Crystal data top
[CrF3(C10H8N2)(H2O)]·2H2OV = 1283.1 (5) Å3
Mr = 319.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0100 (18) ŵ = 0.93 mm1
b = 7.4170 (15) ÅT = 293 K
c = 20.759 (6) Å0.24 × 0.18 × 0.17 mm
β = 112.35 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1916 reflections with I > 2σ(I)
6478 measured reflectionsRint = 0.023
2257 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.12Δρmax = 0.52 e Å3
2257 reflectionsΔρmin = 0.56 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.15638 (5)0.28271 (7)0.32953 (2)0.0283 (2)
F10.2014 (2)0.0442 (2)0.31271 (9)0.0393 (5)
F20.1128 (2)0.5267 (2)0.34286 (9)0.0436 (5)
F30.0083 (2)0.2083 (3)0.35635 (12)0.0521 (6)
N10.3615 (3)0.3591 (4)0.31451 (13)0.0331 (6)
N20.3252 (3)0.2663 (3)0.42877 (13)0.0318 (6)
C10.3689 (4)0.4133 (5)0.25417 (18)0.0453 (8)
H1A0.27410.42990.21570.054*
C20.5145 (5)0.4453 (5)0.2477 (2)0.0540 (10)
H2A0.51680.48290.20540.065*
C30.6529 (5)0.4212 (6)0.3035 (2)0.0579 (10)
H3A0.75130.44060.29970.069*
C40.6469 (4)0.3678 (6)0.3661 (2)0.0533 (10)
H4A0.74100.35130.40500.064*
C50.4997 (4)0.3393 (4)0.37029 (17)0.0358 (7)
C60.4791 (4)0.2890 (4)0.43569 (17)0.0353 (7)
C70.6048 (5)0.2693 (5)0.4996 (2)0.0506 (10)
H7A0.71050.28420.50370.061*
C80.5698 (6)0.2272 (6)0.5569 (2)0.0613 (12)
H8A0.65210.21270.60030.074*
C90.4128 (5)0.2068 (5)0.54970 (18)0.0559 (11)
H9A0.38750.18020.58810.067*
C100.2933 (5)0.2264 (5)0.48461 (18)0.0432 (8)
H10A0.18700.21130.47960.052*
O1W0.0184 (3)0.3056 (3)0.22962 (11)0.0363 (5)
H1W10.05360.34430.19230.044*
H2W10.04760.20230.22110.044*
O2W0.0891 (5)0.4622 (5)0.06932 (16)0.0883 (11)
H1W20.02450.47420.09010.106*
H2W20.14870.37190.08710.106*
O3W0.9992 (4)0.1082 (5)0.05359 (17)0.0790 (10)
H2W30.97500.07640.08500.095*
H1W31.03330.00660.04770.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0252 (3)0.0273 (3)0.0288 (3)0.00016 (18)0.0059 (2)0.00170 (18)
F10.0344 (10)0.0296 (10)0.0462 (10)0.0000 (8)0.0068 (8)0.0007 (8)
F20.0530 (12)0.0329 (10)0.0371 (10)0.0091 (9)0.0084 (9)0.0017 (8)
F30.0343 (11)0.0647 (15)0.0608 (13)0.0003 (10)0.0221 (10)0.0137 (10)
N10.0326 (14)0.0322 (14)0.0334 (14)0.0042 (11)0.0113 (11)0.0016 (11)
N20.0322 (14)0.0298 (14)0.0288 (14)0.0015 (11)0.0063 (11)0.0028 (10)
C10.048 (2)0.046 (2)0.0418 (19)0.0066 (17)0.0172 (16)0.0051 (15)
C20.068 (3)0.050 (2)0.059 (2)0.0085 (19)0.042 (2)0.0035 (18)
C30.043 (2)0.066 (3)0.072 (3)0.0106 (19)0.030 (2)0.001 (2)
C40.0329 (18)0.063 (2)0.062 (2)0.0048 (18)0.0159 (17)0.000 (2)
C50.0315 (16)0.0313 (16)0.0425 (18)0.0038 (13)0.0116 (14)0.0021 (14)
C60.0303 (17)0.0296 (17)0.0384 (18)0.0028 (13)0.0046 (14)0.0014 (13)
C70.0354 (19)0.052 (2)0.046 (2)0.0042 (16)0.0048 (17)0.0025 (16)
C80.062 (3)0.062 (3)0.037 (2)0.003 (2)0.0079 (19)0.0087 (17)
C90.072 (3)0.057 (3)0.0294 (19)0.006 (2)0.0090 (18)0.0086 (16)
C100.045 (2)0.045 (2)0.0367 (19)0.0040 (16)0.0128 (16)0.0048 (15)
O1W0.0351 (12)0.0310 (11)0.0305 (11)0.0072 (9)0.0013 (9)0.0002 (9)
O2W0.124 (3)0.079 (2)0.081 (2)0.037 (2)0.060 (2)0.0043 (18)
O3W0.096 (2)0.083 (2)0.079 (2)0.002 (2)0.0559 (19)0.0067 (19)
Geometric parameters (Å, º) top
Cr1—F31.856 (2)C4—H4A0.9300
Cr1—F11.8769 (18)C5—C61.486 (5)
Cr1—F21.8942 (19)C6—C71.386 (5)
Cr1—O1W1.979 (2)C7—C81.379 (6)
Cr1—N22.047 (3)C7—H7A0.9300
Cr1—N12.067 (3)C8—C91.373 (6)
N1—C11.341 (4)C8—H8A0.9300
N1—C51.348 (4)C9—C101.378 (5)
N2—C101.329 (4)C9—H9A0.9300
N2—C61.350 (4)C10—H10A0.9300
C1—C21.388 (5)O1W—H1W10.8498
C1—H1A0.9300O1W—H2W10.8500
C2—C31.353 (6)O2W—H1W20.8500
C2—H2A0.9300O2W—H2W20.8500
C3—C41.378 (6)O3W—H2W30.7978
C3—H3A0.9300O3W—H1W30.840 (10)
C4—C51.378 (5)
F3—Cr1—F191.69 (9)C2—C3—H3A120.3
F3—Cr1—F290.37 (10)C4—C3—H3A120.3
F1—Cr1—F2177.37 (8)C3—C4—C5119.1 (4)
F3—Cr1—O1W94.86 (10)C3—C4—H4A120.4
F1—Cr1—O1W88.84 (8)C5—C4—H4A120.4
F2—Cr1—O1W89.35 (8)N1—C5—C4121.7 (3)
F3—Cr1—N293.05 (10)N1—C5—C6114.7 (3)
F1—Cr1—N290.05 (9)C4—C5—C6123.6 (3)
F2—Cr1—N291.48 (9)N2—C6—C7121.4 (3)
O1W—Cr1—N2172.04 (10)N2—C6—C5114.5 (3)
F3—Cr1—N1171.69 (10)C7—C6—C5124.1 (3)
F1—Cr1—N187.80 (9)C8—C7—C6118.6 (4)
F2—Cr1—N190.39 (10)C8—C7—H7A120.7
O1W—Cr1—N193.42 (10)C6—C7—H7A120.7
N2—Cr1—N178.66 (11)C9—C8—C7119.7 (4)
C1—N1—C5118.5 (3)C9—C8—H8A120.2
C1—N1—Cr1126.0 (2)C7—C8—H8A120.2
C5—N1—Cr1115.3 (2)C8—C9—C10118.9 (4)
C10—N2—C6119.3 (3)C8—C9—H9A120.5
C10—N2—Cr1124.5 (2)C10—C9—H9A120.5
C6—N2—Cr1116.1 (2)N2—C10—C9122.1 (4)
N1—C1—C2121.7 (3)N2—C10—H10A119.0
N1—C1—H1A119.1C9—C10—H10A119.0
C2—C1—H1A119.1Cr1—O1W—H1W1160.5
C3—C2—C1119.5 (3)Cr1—O1W—H2W191.2
C3—C2—H2A120.3H1W1—O1W—H2W1107.7
C1—C2—H2A120.3H1W2—O2W—H2W2107.7
C2—C3—C4119.4 (4)H2W3—O3W—H1W394.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···F10.852.222.699 (3)116
O1W—H2W1···F2i0.852.022.567 (3)121
O1W—H2W1···F2i0.852.022.567 (3)121
O1W—H1W1···F1ii0.851.972.550 (3)125
O2W—H1W2···F3ii0.852.102.664 (4)124
O2W—H2W2···O3Wiii0.852.332.730 (5)110
O3W—H2W3···F2iv0.801.982.767 (3)171
O3W—H2W3···F3iv0.802.963.490 (4)126
O3W—H1W3···O3Wv0.842.182.748125
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+2, y, z.

Experimental details

Crystal data
Chemical formula[CrF3(C10H8N2)(H2O)]·2H2O
Mr319.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0100 (18), 7.4170 (15), 20.759 (6)
β (°) 112.35 (3)
V3)1283.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.24 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6478, 2257, 1916
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.129, 1.12
No. of reflections2257
No. of parameters175
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···F10.852.222.699 (3)116.1
O1W—H2W1···F2i0.852.022.567 (3)121.1
O1W—H2W1···F2i0.852.022.567 (3)121.1
O1W—H1W1···F1ii0.851.972.550 (3)124.7
O2W—H1W2···F3ii0.852.102.664 (4)123.7
O2W—H2W2···O3Wiii0.852.332.730 (5)109.6
O3W—H2W3···F2iv0.801.982.767 (3)170.8
O3W—H2W3···F3iv0.802.963.490 (4)126.3
O3W—H1W3···O3Wv0.8402.182.748125
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+2, y, z.
 

References

First citationBruker (1997). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, Y. B., Wang, H. Y., Ma, J. P. & Huang, R. Q. (2005). Cryst. Growth Des. 2, 789–800.  Web of Science CSD CrossRef Google Scholar
First citationKrishnan, S. M., Patel, N. M., Knapp, W. R. & Supkowski, R. M. (2007). CrystEngComm, 9, 503–514.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2007). CrystEngComm, 9, 548–555.  Web of Science CSD CrossRef CAS Google Scholar
First citationLarsen, F. K., Overgaard, J., Parsons, S., Rentschler, E., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Angew. Chem. Int. Ed. 42, 5978–5981.  Web of Science CSD CrossRef CAS Google Scholar
First citationOchsenbein, S. T., Tuna, F., Rancan, M., Davies, R. S. G., Muryn, C. A., Waldmann, O., Bircher, R., Sieber, A., Carver, G., Mutka, H., Fernandez-Alonso, F., Podlesnyak, A., Engelhardt, L. P., Timco, G. A., Güdel, H. U. & Winpenny, R. E. P. (2008). Chem. Eur. J. 14, 5144–5158.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimco, G. A., Batsanov, A. S., Larsen, F. K., Muryn, C. A., Overgaard, J., Teat, S. J. & Winpenny, R. E. P. (2005). Chem. Commun. pp. 3649–3651.  Web of Science CSD CrossRef Google Scholar
First citationWu, L. M., Teng, H. B., Feng, X. C. & Ke, X. B. (2007). Cryst. Growth Des. 7, 1337–1342.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds