organic compounds
4-(2-Hydroxyethyl)anilinium 3,5-dinitrobenzoate
aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In the title compound, C8H12NO+·C7H3N2O6−, the anilinium and hydroxyl protons of the cation result in N—H⋯O, N—H⋯(O,O) and O—H⋯O hydrogen-bonding interactions with carboxylate O-atom acceptors, forming a two-dimensional network structure. An intermolecular C—H⋯O interaction is also present.
Related literature
For related structures, see: Etter & Frankenbach (1989); Lynch et al. (1991a,b, 1992, 1993); Ranganathan & Pedireddi (1998); Aakeröy et al. (2003); Hosomi et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809030426/bt5012sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809030426/bt5012Isup2.hkl
The title compound was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3,5-dinitrobenzoic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave light brown coloured flat prisms (m.p. 389 K).
Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The H-atoms bonded to C were included in the
in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Molecular configuration and atom naming scheme for the substituted anilinium cation and the 3,5-dinitrobenzoate anion in (I). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. The two-dimensional hydrogen-bonded network structure of (I) extending across the (a0c) plane and viewed down the approximate b axial direction of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Table 1. |
C8H12NO+·C7H3N2O6− | F(000) = 728 |
Mr = 349.30 | Dx = 1.480 Mg m−3 |
Monoclinic, P21/n | Melting point: 389 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 15.9566 (19) Å | Cell parameters from 3103 reflections |
b = 5.7844 (5) Å | θ = 3.0–28.9° |
c = 17.4118 (14) Å | µ = 0.12 mm−1 |
β = 102.811 (10)° | T = 297 K |
V = 1567.1 (3) Å3 | Cut block, pale brown |
Z = 4 | 0.30 × 0.30 × 0.25 mm |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3061 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2203 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 26.0°, θmin = 3.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −19→19 |
Tmin = 0.950, Tmax = 0.980 | k = −4→7 |
5928 measured reflections | l = −21→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0603P)2] where P = (Fo2 + 2Fc2)/3 |
3061 reflections | (Δ/σ)max < 0.001 |
242 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C8H12NO+·C7H3N2O6− | V = 1567.1 (3) Å3 |
Mr = 349.30 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.9566 (19) Å | µ = 0.12 mm−1 |
b = 5.7844 (5) Å | T = 297 K |
c = 17.4118 (14) Å | 0.30 × 0.30 × 0.25 mm |
β = 102.811 (10)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 3061 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2203 reflections with I > 2σ(I) |
Tmin = 0.950, Tmax = 0.980 | Rint = 0.017 |
5928 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.21 e Å−3 |
3061 reflections | Δρmin = −0.17 e Å−3 |
242 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O11A | 0.46281 (7) | 0.8636 (2) | 0.32392 (7) | 0.0479 (4) | |
N4A | 0.09143 (8) | 0.6731 (3) | 0.07459 (9) | 0.0423 (4) | |
C1A | 0.33713 (9) | 0.9649 (3) | 0.17095 (8) | 0.0376 (5) | |
C2A | 0.32916 (10) | 0.7560 (3) | 0.13049 (10) | 0.0468 (5) | |
C3A | 0.24921 (10) | 0.6600 (3) | 0.09931 (10) | 0.0458 (5) | |
C4A | 0.17646 (9) | 0.7749 (2) | 0.10760 (8) | 0.0343 (4) | |
C5A | 0.18206 (9) | 0.9815 (3) | 0.14700 (9) | 0.0423 (5) | |
C6A | 0.26212 (10) | 1.0747 (3) | 0.17881 (10) | 0.0435 (5) | |
C21A | 0.49028 (10) | 0.9216 (3) | 0.25331 (10) | 0.0541 (6) | |
C31A | 0.42384 (9) | 1.0756 (3) | 0.20306 (10) | 0.0493 (5) | |
O11 | 0.04161 (6) | −0.00501 (19) | −0.08313 (7) | 0.0524 (4) | |
O12 | 0.10800 (7) | 0.31952 (19) | −0.03468 (7) | 0.0518 (4) | |
O31 | 0.42127 (8) | 0.3454 (2) | 0.01994 (9) | 0.0690 (5) | |
O32 | 0.48427 (7) | 0.1694 (2) | −0.06214 (8) | 0.0596 (4) | |
O51 | 0.34790 (7) | −0.5258 (2) | −0.18874 (7) | 0.0600 (4) | |
O52 | 0.21061 (8) | −0.5622 (2) | −0.20625 (7) | 0.0544 (4) | |
N3 | 0.42210 (8) | 0.2056 (2) | −0.03294 (8) | 0.0456 (5) | |
N5 | 0.27785 (8) | −0.4606 (2) | −0.17929 (7) | 0.0410 (4) | |
C1 | 0.19176 (8) | 0.0264 (2) | −0.07694 (8) | 0.0335 (4) | |
C2 | 0.26684 (9) | 0.1488 (2) | −0.04825 (8) | 0.0359 (5) | |
C3 | 0.34373 (9) | 0.0683 (3) | −0.06244 (9) | 0.0356 (4) | |
C4 | 0.34961 (9) | −0.1305 (2) | −0.10445 (9) | 0.0369 (4) | |
C5 | 0.27433 (9) | −0.2501 (2) | −0.13187 (8) | 0.0344 (4) | |
C6 | 0.19600 (9) | −0.1775 (2) | −0.11857 (8) | 0.0349 (4) | |
C11 | 0.10697 (9) | 0.1224 (3) | −0.06366 (9) | 0.0376 (5) | |
H2A | 0.37840 | 0.67910 | 0.12420 | 0.0560* | |
H3A | 0.24490 | 0.51900 | 0.07300 | 0.0550* | |
H5A | 0.13250 | 1.05830 | 0.15230 | 0.0510* | |
H6A | 0.26570 | 1.21390 | 0.20610 | 0.0520* | |
H11A | 0.4946 (13) | 0.751 (4) | 0.3511 (12) | 0.077 (7)* | |
H21A | 0.49730 | 0.78200 | 0.22460 | 0.0650* | |
H22A | 0.54520 | 1.00100 | 0.26650 | 0.0650* | |
H31A | 0.44640 | 1.13040 | 0.15900 | 0.0590* | |
H32A | 0.41540 | 1.20950 | 0.23400 | 0.0590* | |
H41A | 0.0919 (12) | 0.580 (3) | 0.0292 (12) | 0.069 (6)* | |
H42A | 0.0494 (13) | 0.788 (3) | 0.0611 (12) | 0.069 (6)* | |
H43A | 0.0745 (12) | 0.566 (3) | 0.1140 (12) | 0.074 (6)* | |
H2 | 0.26560 | 0.28400 | −0.01970 | 0.0430* | |
H4 | 0.40170 | −0.18130 | −0.11380 | 0.0440* | |
H6 | 0.14660 | −0.26430 | −0.13730 | 0.0420* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11A | 0.0444 (6) | 0.0510 (7) | 0.0489 (7) | 0.0053 (5) | 0.0116 (5) | 0.0101 (6) |
N4A | 0.0347 (7) | 0.0486 (8) | 0.0425 (8) | −0.0028 (6) | 0.0065 (6) | −0.0058 (7) |
C1A | 0.0356 (8) | 0.0449 (9) | 0.0319 (8) | −0.0004 (7) | 0.0067 (6) | 0.0067 (7) |
C2A | 0.0335 (8) | 0.0548 (10) | 0.0541 (10) | 0.0072 (7) | 0.0141 (7) | −0.0055 (8) |
C3A | 0.0456 (9) | 0.0435 (9) | 0.0501 (10) | 0.0029 (7) | 0.0146 (8) | −0.0114 (8) |
C4A | 0.0328 (7) | 0.0388 (8) | 0.0308 (7) | −0.0001 (6) | 0.0063 (6) | 0.0004 (7) |
C5A | 0.0322 (8) | 0.0431 (9) | 0.0501 (10) | 0.0093 (7) | 0.0058 (7) | −0.0048 (8) |
C6A | 0.0443 (9) | 0.0371 (8) | 0.0469 (9) | 0.0024 (7) | 0.0057 (7) | −0.0059 (7) |
C21A | 0.0331 (8) | 0.0813 (12) | 0.0484 (10) | −0.0022 (8) | 0.0100 (7) | 0.0085 (9) |
C31A | 0.0380 (8) | 0.0643 (11) | 0.0455 (9) | −0.0075 (8) | 0.0092 (7) | 0.0108 (8) |
O11 | 0.0340 (6) | 0.0542 (7) | 0.0722 (8) | −0.0052 (5) | 0.0186 (6) | −0.0177 (6) |
O12 | 0.0423 (6) | 0.0502 (7) | 0.0635 (8) | 0.0051 (5) | 0.0130 (5) | −0.0216 (6) |
O31 | 0.0583 (8) | 0.0695 (9) | 0.0818 (10) | −0.0207 (6) | 0.0211 (7) | −0.0324 (8) |
O32 | 0.0366 (6) | 0.0669 (8) | 0.0808 (9) | −0.0044 (5) | 0.0251 (6) | −0.0015 (7) |
O51 | 0.0541 (7) | 0.0592 (8) | 0.0694 (8) | 0.0179 (6) | 0.0193 (6) | −0.0151 (6) |
O52 | 0.0585 (7) | 0.0490 (7) | 0.0551 (8) | −0.0050 (6) | 0.0111 (6) | −0.0155 (6) |
N3 | 0.0385 (7) | 0.0448 (8) | 0.0540 (9) | −0.0055 (6) | 0.0113 (6) | −0.0019 (7) |
N5 | 0.0487 (8) | 0.0381 (7) | 0.0366 (7) | 0.0082 (6) | 0.0102 (6) | −0.0009 (6) |
C1 | 0.0334 (7) | 0.0366 (8) | 0.0320 (7) | 0.0018 (6) | 0.0105 (6) | 0.0014 (6) |
C2 | 0.0399 (8) | 0.0343 (8) | 0.0353 (8) | 0.0011 (6) | 0.0124 (6) | −0.0031 (6) |
C3 | 0.0325 (7) | 0.0389 (8) | 0.0361 (8) | −0.0015 (6) | 0.0093 (6) | 0.0010 (7) |
C4 | 0.0341 (7) | 0.0410 (8) | 0.0381 (8) | 0.0058 (6) | 0.0136 (6) | 0.0029 (7) |
C5 | 0.0413 (8) | 0.0335 (7) | 0.0294 (7) | 0.0056 (6) | 0.0098 (6) | 0.0004 (6) |
C6 | 0.0338 (7) | 0.0362 (8) | 0.0343 (8) | −0.0013 (6) | 0.0069 (6) | −0.0019 (7) |
C11 | 0.0349 (8) | 0.0430 (9) | 0.0356 (8) | 0.0020 (7) | 0.0096 (6) | −0.0029 (7) |
O11A—C21A | 1.434 (2) | C5A—C6A | 1.384 (2) |
O11A—H11A | 0.89 (2) | C21A—C31A | 1.507 (2) |
O11—C11 | 1.2606 (19) | C2A—H2A | 0.9300 |
O12—C11 | 1.246 (2) | C3A—H3A | 0.9300 |
O31—N3 | 1.2277 (19) | C5A—H5A | 0.9300 |
O32—N3 | 1.2289 (18) | C6A—H6A | 0.9300 |
O51—N5 | 1.2249 (17) | C21A—H21A | 0.9700 |
O52—N5 | 1.2221 (18) | C21A—H22A | 0.9700 |
N4A—C4A | 1.474 (2) | C31A—H31A | 0.9700 |
N4A—H43A | 1.005 (19) | C31A—H32A | 0.9700 |
N4A—H41A | 0.958 (19) | C1—C2 | 1.3859 (19) |
N4A—H42A | 0.936 (19) | C1—C6 | 1.3939 (17) |
N3—C3 | 1.474 (2) | C1—C11 | 1.527 (2) |
N5—C5 | 1.4792 (17) | C2—C3 | 1.385 (2) |
C1A—C6A | 1.388 (2) | C3—C4 | 1.377 (2) |
C1A—C2A | 1.390 (2) | C4—C5 | 1.377 (2) |
C1A—C31A | 1.515 (2) | C5—C6 | 1.386 (2) |
C2A—C3A | 1.387 (2) | C2—H2 | 0.9300 |
C3A—C4A | 1.373 (2) | C4—H4 | 0.9300 |
C4A—C5A | 1.371 (2) | C6—H6 | 0.9300 |
C21A—O11A—H11A | 112.3 (13) | C1A—C6A—H6A | 119.00 |
C4A—N4A—H43A | 110.1 (11) | C31A—C21A—H21A | 110.00 |
H41A—N4A—H42A | 109.2 (17) | O11A—C21A—H22A | 110.00 |
H42A—N4A—H43A | 108.8 (17) | O11A—C21A—H21A | 110.00 |
C4A—N4A—H42A | 111.1 (12) | C31A—C21A—H22A | 110.00 |
H41A—N4A—H43A | 105.6 (15) | H21A—C21A—H22A | 108.00 |
C4A—N4A—H41A | 111.8 (12) | H31A—C31A—H32A | 107.00 |
O31—N3—O32 | 124.50 (14) | C1A—C31A—H31A | 108.00 |
O32—N3—C3 | 117.66 (13) | C1A—C31A—H32A | 108.00 |
O31—N3—C3 | 117.82 (13) | C21A—C31A—H31A | 108.00 |
O51—N5—O52 | 123.36 (13) | C21A—C31A—H32A | 108.00 |
O52—N5—C5 | 118.13 (12) | C2—C1—C6 | 118.82 (12) |
O51—N5—C5 | 118.50 (12) | C2—C1—C11 | 118.94 (12) |
C2A—C1A—C6A | 117.62 (14) | C6—C1—C11 | 122.23 (12) |
C6A—C1A—C31A | 120.48 (15) | C1—C2—C3 | 119.55 (12) |
C2A—C1A—C31A | 121.87 (14) | N3—C3—C2 | 118.25 (14) |
C1A—C2A—C3A | 121.28 (15) | N3—C3—C4 | 118.85 (13) |
C2A—C3A—C4A | 119.40 (15) | C2—C3—C4 | 122.88 (14) |
N4A—C4A—C3A | 119.50 (13) | C3—C4—C5 | 116.54 (13) |
N4A—C4A—C5A | 119.71 (13) | N5—C5—C4 | 117.97 (12) |
C3A—C4A—C5A | 120.79 (14) | N5—C5—C6 | 119.34 (12) |
C4A—C5A—C6A | 119.46 (15) | C4—C5—C6 | 122.66 (12) |
C1A—C6A—C5A | 121.45 (16) | C1—C6—C5 | 119.53 (12) |
O11A—C21A—C31A | 109.07 (13) | O11—C11—O12 | 125.45 (14) |
C1A—C31A—C21A | 115.58 (14) | O11—C11—C1 | 117.05 (14) |
C3A—C2A—H2A | 119.00 | O12—C11—C1 | 117.50 (13) |
C1A—C2A—H2A | 119.00 | C1—C2—H2 | 120.00 |
C2A—C3A—H3A | 120.00 | C3—C2—H2 | 120.00 |
C4A—C3A—H3A | 120.00 | C3—C4—H4 | 122.00 |
C4A—C5A—H5A | 120.00 | C5—C4—H4 | 122.00 |
C6A—C5A—H5A | 120.00 | C1—C6—H6 | 120.00 |
C5A—C6A—H6A | 119.00 | C5—C6—H6 | 120.00 |
O32—N3—C3—C2 | −161.49 (14) | C4A—C5A—C6A—C1A | 0.8 (2) |
O32—N3—C3—C4 | 16.9 (2) | O11A—C21A—C31A—C1A | −65.65 (18) |
O31—N3—C3—C2 | 19.7 (2) | C6—C1—C2—C3 | 0.9 (2) |
O31—N3—C3—C4 | −161.93 (14) | C11—C1—C2—C3 | −177.57 (13) |
O51—N5—C5—C4 | 3.63 (19) | C2—C1—C6—C5 | −1.49 (19) |
O52—N5—C5—C6 | 1.02 (18) | C11—C1—C6—C5 | 176.97 (13) |
O51—N5—C5—C6 | −178.10 (12) | C2—C1—C11—O11 | −172.71 (13) |
O52—N5—C5—C4 | −177.25 (13) | C2—C1—C11—O12 | 7.4 (2) |
C6A—C1A—C2A—C3A | −0.2 (2) | C6—C1—C11—O11 | 8.8 (2) |
C31A—C1A—C2A—C3A | −178.02 (15) | C6—C1—C11—O12 | −171.08 (13) |
C2A—C1A—C6A—C5A | −0.6 (2) | C1—C2—C3—N3 | 178.42 (13) |
C31A—C1A—C6A—C5A | 177.21 (15) | C1—C2—C3—C4 | 0.1 (2) |
C2A—C1A—C31A—C21A | −51.8 (2) | N3—C3—C4—C5 | −178.87 (13) |
C6A—C1A—C31A—C21A | 130.51 (16) | C2—C3—C4—C5 | −0.6 (2) |
C1A—C2A—C3A—C4A | 0.9 (3) | C3—C4—C5—N5 | 178.18 (13) |
C2A—C3A—C4A—C5A | −0.7 (2) | C3—C4—C5—C6 | 0.0 (2) |
C2A—C3A—C4A—N4A | −179.93 (16) | N5—C5—C6—C1 | −177.13 (12) |
N4A—C4A—C5A—C6A | 179.12 (14) | C4—C5—C6—C1 | 1.1 (2) |
C3A—C4A—C5A—C6A | −0.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11A—H11A···O11i | 0.89 (2) | 1.88 (2) | 2.7569 (16) | 168 (2) |
N4A—H41A···O12 | 0.958 (19) | 1.924 (19) | 2.845 (2) | 160.8 (17) |
N4A—H42A···O11ii | 0.936 (19) | 2.02 (2) | 2.8905 (19) | 154.0 (18) |
N4A—H42A···O12ii | 0.936 (19) | 2.53 (2) | 3.1033 (18) | 119.9 (14) |
N4A—H43A···O11Aiii | 1.005 (19) | 1.783 (19) | 2.785 (2) | 174.4 (19) |
C5A—H5A···O11Aiv | 0.93 | 2.43 | 3.317 (2) | 161 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C8H12NO+·C7H3N2O6− |
Mr | 349.30 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 297 |
a, b, c (Å) | 15.9566 (19), 5.7844 (5), 17.4118 (14) |
β (°) | 102.811 (10) |
V (Å3) | 1567.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.30 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.950, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5928, 3061, 2203 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.099, 0.98 |
No. of reflections | 3061 |
No. of parameters | 242 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O11A—H11A···O11i | 0.89 (2) | 1.88 (2) | 2.7569 (16) | 168 (2) |
N4A—H41A···O12 | 0.958 (19) | 1.924 (19) | 2.845 (2) | 160.8 (17) |
N4A—H42A···O11ii | 0.936 (19) | 2.02 (2) | 2.8905 (19) | 154.0 (18) |
N4A—H42A···O12ii | 0.936 (19) | 2.53 (2) | 3.1033 (18) | 119.9 (14) |
N4A—H43A···O11Aiii | 1.005 (19) | 1.783 (19) | 2.785 (2) | 174.4 (19) |
C5A—H5A···O11Aiv | 0.9300 | 2.4300 | 3.317 (2) | 161.00 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.
References
Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 6, 159–165. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10–12. CSD CrossRef CAS Google Scholar
Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e144–e146. CSD CrossRef CAS IUCr Journals Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991a). Aust. J. Chem. 44, 809–816. CrossRef CAS Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991b). Aust. J. Chem. 44, 1017–1022. CrossRef CAS Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992). Acta Cryst. C48, 1265–1267. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1993). Aust. J. Chem. 46, 921–927. CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Ranganathan, A. & Pedireddi, V. R. (1998). Tetrahedron Lett. 39, 1803–1806. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The nitro-substituted aromatic acid, 3,5-dinitrobenzoic acid (3,5-DNBA) has been used to synthesize chiral crystalline adduct materials with physical properties potentially useful in applications such as nonlinear optics, giving e.g. the compound 3,5-DNBA–4-aminobenzoic acid (1/1) (Etter & Frankenbach, 1989). Since that time there have been a large number of 3,5-DNBA adduct structures reported, e.g. with indole-3-acetic acid (1:1) (Lynch et al., 1991a), phenoxyacetic acid (a 2:1 monohydrate) (Lynch et al., 1991b), 1,4-diiodobenzene (2:1) (Ranganathan & Pedireddi (1998)], a series of alkyl-substituted carbazoles (all 1:1) (Hosomi et al., 2000) and benzamide (1:1)] (Aakeröy et al., 2003); Proton-transfer compounds and proton-transfer-3,5-DNBA adduct compounds are also very common, e.g. with the herbicides amitrole (3-amino-1,2,4-triazole) and prometryn (N,N'-bis(1-methylethyl)-6- methylthio-1,2,4-triazine-2,4-diamide) (Lynch et al., 1993) (all 1:1)
In the light of this background we looked at 3,5-DNBA as a possible means of obtaining a crystalline compound from the non-crystalline aromatic Lewis base 2-(4-aminophenyl)ethanol. The 1:1 stoichiometric reaction of 3,5-DNBA with this reagent in 50% ethanol–water was expected to give either an anilinium salt or an adduct salt and the result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3,5-dinitrobenzoate C8H12NO+. C7H3N2O6- (I), the structure of which is reported here.
With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group is subsequently involved in four hydrogen-bonding interactions with only carboxylate-O acceptors (Table 1). One of these associations is asymmetric cyclic [N–H···O,O', graph set R21(4)]. These interactions, together with an hydroxyl O–H···Ocarboxyl hydrogen bond give a two-dimensional network structure which lies in the (a0c) plane and extends down the b cell direction (Fig. 2). Also present in the structure are short inversion-related intermolecular nitro O···O nonbonding interactions [O32···O32iv, 2.8799 (18) Å; symmetry code: (iv) -x + 1, -y, -z]. The 3,5-DNBA anion is essentially planar [C2–C1–C11–O11A, -172.71 (13)° (carboxyl); C2–C3–N3–O32, -161.49 (14)° and C4–C5–N5–O52, -177.25 (13)° (nitro)].