organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Hy­droxy­ethyl)anilinium 3,5-di­nitro­benzoate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 16 July 2009; accepted 31 July 2009; online 8 August 2009)

In the title compound, C8H12NO+·C7H3N2O6, the anilinium and hydroxyl protons of the cation result in N—H⋯O, N—H⋯(O,O) and O—H⋯O hydrogen-bonding inter­actions with carboxyl­ate O-atom acceptors, forming a two-dimensional network structure. An intermolecular C—H⋯O interaction is also present.

Related literature

For related structures, see: Etter & Frankenbach (1989[Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10-12.]); Lynch et al. (1991a[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991a). Aust. J. Chem. 44, 809-816.],b[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991b). Aust. J. Chem. 44, 1017-1022.], 1992[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992). Acta Cryst. C48, 1265-1267.], 1993[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1993). Aust. J. Chem. 46, 921-927.]); Ranganathan & Pedireddi (1998[Ranganathan, A. & Pedireddi, V. R. (1998). Tetrahedron Lett. 39, 1803-1806.]); Aakeröy et al. (2003[Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 6, 159-165.]); Hosomi et al. (2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e144-e146.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12NO+·C7H3N2O6

  • Mr = 349.30

  • Monoclinic, P 21 /n

  • a = 15.9566 (19) Å

  • b = 5.7844 (5) Å

  • c = 17.4118 (14) Å

  • β = 102.811 (10)°

  • V = 1567.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 297 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.980

  • 5928 measured reflections

  • 3061 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 0.98

  • 3061 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11A⋯O11i 0.89 (2) 1.88 (2) 2.7569 (16) 168 (2)
N4A—H41A⋯O12 0.958 (19) 1.924 (19) 2.845 (2) 160.8 (17)
N4A—H42A⋯O11ii 0.936 (19) 2.02 (2) 2.8905 (19) 154.0 (18)
N4A—H42A⋯O12ii 0.936 (19) 2.53 (2) 3.1033 (18) 119.9 (14)
N4A—H43A⋯O11Aiii 1.005 (19) 1.783 (19) 2.785 (2) 174.4 (19)
C5A—H5A⋯O11Aiv 0.93 2.43 3.317 (2) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The nitro-substituted aromatic acid, 3,5-dinitrobenzoic acid (3,5-DNBA) has been used to synthesize chiral crystalline adduct materials with physical properties potentially useful in applications such as nonlinear optics, giving e.g. the compound 3,5-DNBA–4-aminobenzoic acid (1/1) (Etter & Frankenbach, 1989). Since that time there have been a large number of 3,5-DNBA adduct structures reported, e.g. with indole-3-acetic acid (1:1) (Lynch et al., 1991a), phenoxyacetic acid (a 2:1 monohydrate) (Lynch et al., 1991b), 1,4-diiodobenzene (2:1) (Ranganathan & Pedireddi (1998)], a series of alkyl-substituted carbazoles (all 1:1) (Hosomi et al., 2000) and benzamide (1:1)] (Aakeröy et al., 2003); Proton-transfer compounds and proton-transfer-3,5-DNBA adduct compounds are also very common, e.g. with the herbicides amitrole (3-amino-1,2,4-triazole) and prometryn (N,N'-bis(1-methylethyl)-6- methylthio-1,2,4-triazine-2,4-diamide) (Lynch et al., 1993) (all 1:1)

In the light of this background we looked at 3,5-DNBA as a possible means of obtaining a crystalline compound from the non-crystalline aromatic Lewis base 2-(4-aminophenyl)ethanol. The 1:1 stoichiometric reaction of 3,5-DNBA with this reagent in 50% ethanol–water was expected to give either an anilinium salt or an adduct salt and the result was a 1:1 salt 4-(2-hydroxyethyl)anilinium 3,5-dinitrobenzoate C8H12NO+. C7H3N2O6- (I), the structure of which is reported here.

With (I) (Fig. 1), proton transfer occurs and the resulting anilinium group is subsequently involved in four hydrogen-bonding interactions with only carboxylate-O acceptors (Table 1). One of these associations is asymmetric cyclic [N–H···O,O', graph set R21(4)]. These interactions, together with an hydroxyl OH···Ocarboxyl hydrogen bond give a two-dimensional network structure which lies in the (a0c) plane and extends down the b cell direction (Fig. 2). Also present in the structure are short inversion-related intermolecular nitro O···O nonbonding interactions [O32···O32iv, 2.8799 (18) Å; symmetry code: (iv) -x + 1, -y, -z]. The 3,5-DNBA anion is essentially planar [C2–C1–C11–O11A, -172.71 (13)° (carboxyl); C2–C3–N3–O32, -161.49 (14)° and C4–C5–N5–O52, -177.25 (13)° (nitro)].

Related literature top

For related structures, see: Etter & Frankenbach (1989); Lynch et al. (1991a,b, 1992, 1993); Ranganathan & Pedireddi (1998); Aakeröy et al. (2003); Hosomi et al. (2000).

Experimental top

The title compound was synthesized by heating together 1 mmol quantities of 2-(4-aminophenyl)ethanol with 3,5-dinitrobenzoic acid in 50 ml of 50% ethanol–water under reflux for 10 minutes. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave light brown coloured flat prisms (m.p. 389 K).

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The H-atoms bonded to C were included in the refinement in calculated positions [C–H(aliphatic) = 0.97 Å and C–H(aromatic) = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the substituted anilinium cation and the 3,5-dinitrobenzoate anion in (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded network structure of (I) extending across the (a0c) plane and viewed down the approximate b axial direction of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Table 1.
4-(2-Hydroxyethyl)anilinium 3,5-dinitrobenzoate top
Crystal data top
C8H12NO+·C7H3N2O6F(000) = 728
Mr = 349.30Dx = 1.480 Mg m3
Monoclinic, P21/nMelting point: 389 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.9566 (19) ÅCell parameters from 3103 reflections
b = 5.7844 (5) Åθ = 3.0–28.9°
c = 17.4118 (14) ŵ = 0.12 mm1
β = 102.811 (10)°T = 297 K
V = 1567.1 (3) Å3Cut block, pale brown
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3061 independent reflections
Radiation source: Enhance (Mo) X-ray source2203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.950, Tmax = 0.980k = 47
5928 measured reflectionsl = 2115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
3061 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C8H12NO+·C7H3N2O6V = 1567.1 (3) Å3
Mr = 349.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.9566 (19) ŵ = 0.12 mm1
b = 5.7844 (5) ÅT = 297 K
c = 17.4118 (14) Å0.30 × 0.30 × 0.25 mm
β = 102.811 (10)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
3061 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2203 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.980Rint = 0.017
5928 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.21 e Å3
3061 reflectionsΔρmin = 0.17 e Å3
242 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11A0.46281 (7)0.8636 (2)0.32392 (7)0.0479 (4)
N4A0.09143 (8)0.6731 (3)0.07459 (9)0.0423 (4)
C1A0.33713 (9)0.9649 (3)0.17095 (8)0.0376 (5)
C2A0.32916 (10)0.7560 (3)0.13049 (10)0.0468 (5)
C3A0.24921 (10)0.6600 (3)0.09931 (10)0.0458 (5)
C4A0.17646 (9)0.7749 (2)0.10760 (8)0.0343 (4)
C5A0.18206 (9)0.9815 (3)0.14700 (9)0.0423 (5)
C6A0.26212 (10)1.0747 (3)0.17881 (10)0.0435 (5)
C21A0.49028 (10)0.9216 (3)0.25331 (10)0.0541 (6)
C31A0.42384 (9)1.0756 (3)0.20306 (10)0.0493 (5)
O110.04161 (6)0.00501 (19)0.08313 (7)0.0524 (4)
O120.10800 (7)0.31952 (19)0.03468 (7)0.0518 (4)
O310.42127 (8)0.3454 (2)0.01994 (9)0.0690 (5)
O320.48427 (7)0.1694 (2)0.06214 (8)0.0596 (4)
O510.34790 (7)0.5258 (2)0.18874 (7)0.0600 (4)
O520.21061 (8)0.5622 (2)0.20625 (7)0.0544 (4)
N30.42210 (8)0.2056 (2)0.03294 (8)0.0456 (5)
N50.27785 (8)0.4606 (2)0.17929 (7)0.0410 (4)
C10.19176 (8)0.0264 (2)0.07694 (8)0.0335 (4)
C20.26684 (9)0.1488 (2)0.04825 (8)0.0359 (5)
C30.34373 (9)0.0683 (3)0.06244 (9)0.0356 (4)
C40.34961 (9)0.1305 (2)0.10445 (9)0.0369 (4)
C50.27433 (9)0.2501 (2)0.13187 (8)0.0344 (4)
C60.19600 (9)0.1775 (2)0.11857 (8)0.0349 (4)
C110.10697 (9)0.1224 (3)0.06366 (9)0.0376 (5)
H2A0.378400.679100.124200.0560*
H3A0.244900.519000.073000.0550*
H5A0.132501.058300.152300.0510*
H6A0.265701.213900.206100.0520*
H11A0.4946 (13)0.751 (4)0.3511 (12)0.077 (7)*
H21A0.497300.782000.224600.0650*
H22A0.545201.001000.266500.0650*
H31A0.446401.130400.159000.0590*
H32A0.415401.209500.234000.0590*
H41A0.0919 (12)0.580 (3)0.0292 (12)0.069 (6)*
H42A0.0494 (13)0.788 (3)0.0611 (12)0.069 (6)*
H43A0.0745 (12)0.566 (3)0.1140 (12)0.074 (6)*
H20.265600.284000.019700.0430*
H40.401700.181300.113800.0440*
H60.146600.264300.137300.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11A0.0444 (6)0.0510 (7)0.0489 (7)0.0053 (5)0.0116 (5)0.0101 (6)
N4A0.0347 (7)0.0486 (8)0.0425 (8)0.0028 (6)0.0065 (6)0.0058 (7)
C1A0.0356 (8)0.0449 (9)0.0319 (8)0.0004 (7)0.0067 (6)0.0067 (7)
C2A0.0335 (8)0.0548 (10)0.0541 (10)0.0072 (7)0.0141 (7)0.0055 (8)
C3A0.0456 (9)0.0435 (9)0.0501 (10)0.0029 (7)0.0146 (8)0.0114 (8)
C4A0.0328 (7)0.0388 (8)0.0308 (7)0.0001 (6)0.0063 (6)0.0004 (7)
C5A0.0322 (8)0.0431 (9)0.0501 (10)0.0093 (7)0.0058 (7)0.0048 (8)
C6A0.0443 (9)0.0371 (8)0.0469 (9)0.0024 (7)0.0057 (7)0.0059 (7)
C21A0.0331 (8)0.0813 (12)0.0484 (10)0.0022 (8)0.0100 (7)0.0085 (9)
C31A0.0380 (8)0.0643 (11)0.0455 (9)0.0075 (8)0.0092 (7)0.0108 (8)
O110.0340 (6)0.0542 (7)0.0722 (8)0.0052 (5)0.0186 (6)0.0177 (6)
O120.0423 (6)0.0502 (7)0.0635 (8)0.0051 (5)0.0130 (5)0.0216 (6)
O310.0583 (8)0.0695 (9)0.0818 (10)0.0207 (6)0.0211 (7)0.0324 (8)
O320.0366 (6)0.0669 (8)0.0808 (9)0.0044 (5)0.0251 (6)0.0015 (7)
O510.0541 (7)0.0592 (8)0.0694 (8)0.0179 (6)0.0193 (6)0.0151 (6)
O520.0585 (7)0.0490 (7)0.0551 (8)0.0050 (6)0.0111 (6)0.0155 (6)
N30.0385 (7)0.0448 (8)0.0540 (9)0.0055 (6)0.0113 (6)0.0019 (7)
N50.0487 (8)0.0381 (7)0.0366 (7)0.0082 (6)0.0102 (6)0.0009 (6)
C10.0334 (7)0.0366 (8)0.0320 (7)0.0018 (6)0.0105 (6)0.0014 (6)
C20.0399 (8)0.0343 (8)0.0353 (8)0.0011 (6)0.0124 (6)0.0031 (6)
C30.0325 (7)0.0389 (8)0.0361 (8)0.0015 (6)0.0093 (6)0.0010 (7)
C40.0341 (7)0.0410 (8)0.0381 (8)0.0058 (6)0.0136 (6)0.0029 (7)
C50.0413 (8)0.0335 (7)0.0294 (7)0.0056 (6)0.0098 (6)0.0004 (6)
C60.0338 (7)0.0362 (8)0.0343 (8)0.0013 (6)0.0069 (6)0.0019 (7)
C110.0349 (8)0.0430 (9)0.0356 (8)0.0020 (7)0.0096 (6)0.0029 (7)
Geometric parameters (Å, º) top
O11A—C21A1.434 (2)C5A—C6A1.384 (2)
O11A—H11A0.89 (2)C21A—C31A1.507 (2)
O11—C111.2606 (19)C2A—H2A0.9300
O12—C111.246 (2)C3A—H3A0.9300
O31—N31.2277 (19)C5A—H5A0.9300
O32—N31.2289 (18)C6A—H6A0.9300
O51—N51.2249 (17)C21A—H21A0.9700
O52—N51.2221 (18)C21A—H22A0.9700
N4A—C4A1.474 (2)C31A—H31A0.9700
N4A—H43A1.005 (19)C31A—H32A0.9700
N4A—H41A0.958 (19)C1—C21.3859 (19)
N4A—H42A0.936 (19)C1—C61.3939 (17)
N3—C31.474 (2)C1—C111.527 (2)
N5—C51.4792 (17)C2—C31.385 (2)
C1A—C6A1.388 (2)C3—C41.377 (2)
C1A—C2A1.390 (2)C4—C51.377 (2)
C1A—C31A1.515 (2)C5—C61.386 (2)
C2A—C3A1.387 (2)C2—H20.9300
C3A—C4A1.373 (2)C4—H40.9300
C4A—C5A1.371 (2)C6—H60.9300
C21A—O11A—H11A112.3 (13)C1A—C6A—H6A119.00
C4A—N4A—H43A110.1 (11)C31A—C21A—H21A110.00
H41A—N4A—H42A109.2 (17)O11A—C21A—H22A110.00
H42A—N4A—H43A108.8 (17)O11A—C21A—H21A110.00
C4A—N4A—H42A111.1 (12)C31A—C21A—H22A110.00
H41A—N4A—H43A105.6 (15)H21A—C21A—H22A108.00
C4A—N4A—H41A111.8 (12)H31A—C31A—H32A107.00
O31—N3—O32124.50 (14)C1A—C31A—H31A108.00
O32—N3—C3117.66 (13)C1A—C31A—H32A108.00
O31—N3—C3117.82 (13)C21A—C31A—H31A108.00
O51—N5—O52123.36 (13)C21A—C31A—H32A108.00
O52—N5—C5118.13 (12)C2—C1—C6118.82 (12)
O51—N5—C5118.50 (12)C2—C1—C11118.94 (12)
C2A—C1A—C6A117.62 (14)C6—C1—C11122.23 (12)
C6A—C1A—C31A120.48 (15)C1—C2—C3119.55 (12)
C2A—C1A—C31A121.87 (14)N3—C3—C2118.25 (14)
C1A—C2A—C3A121.28 (15)N3—C3—C4118.85 (13)
C2A—C3A—C4A119.40 (15)C2—C3—C4122.88 (14)
N4A—C4A—C3A119.50 (13)C3—C4—C5116.54 (13)
N4A—C4A—C5A119.71 (13)N5—C5—C4117.97 (12)
C3A—C4A—C5A120.79 (14)N5—C5—C6119.34 (12)
C4A—C5A—C6A119.46 (15)C4—C5—C6122.66 (12)
C1A—C6A—C5A121.45 (16)C1—C6—C5119.53 (12)
O11A—C21A—C31A109.07 (13)O11—C11—O12125.45 (14)
C1A—C31A—C21A115.58 (14)O11—C11—C1117.05 (14)
C3A—C2A—H2A119.00O12—C11—C1117.50 (13)
C1A—C2A—H2A119.00C1—C2—H2120.00
C2A—C3A—H3A120.00C3—C2—H2120.00
C4A—C3A—H3A120.00C3—C4—H4122.00
C4A—C5A—H5A120.00C5—C4—H4122.00
C6A—C5A—H5A120.00C1—C6—H6120.00
C5A—C6A—H6A119.00C5—C6—H6120.00
O32—N3—C3—C2161.49 (14)C4A—C5A—C6A—C1A0.8 (2)
O32—N3—C3—C416.9 (2)O11A—C21A—C31A—C1A65.65 (18)
O31—N3—C3—C219.7 (2)C6—C1—C2—C30.9 (2)
O31—N3—C3—C4161.93 (14)C11—C1—C2—C3177.57 (13)
O51—N5—C5—C43.63 (19)C2—C1—C6—C51.49 (19)
O52—N5—C5—C61.02 (18)C11—C1—C6—C5176.97 (13)
O51—N5—C5—C6178.10 (12)C2—C1—C11—O11172.71 (13)
O52—N5—C5—C4177.25 (13)C2—C1—C11—O127.4 (2)
C6A—C1A—C2A—C3A0.2 (2)C6—C1—C11—O118.8 (2)
C31A—C1A—C2A—C3A178.02 (15)C6—C1—C11—O12171.08 (13)
C2A—C1A—C6A—C5A0.6 (2)C1—C2—C3—N3178.42 (13)
C31A—C1A—C6A—C5A177.21 (15)C1—C2—C3—C40.1 (2)
C2A—C1A—C31A—C21A51.8 (2)N3—C3—C4—C5178.87 (13)
C6A—C1A—C31A—C21A130.51 (16)C2—C3—C4—C50.6 (2)
C1A—C2A—C3A—C4A0.9 (3)C3—C4—C5—N5178.18 (13)
C2A—C3A—C4A—C5A0.7 (2)C3—C4—C5—C60.0 (2)
C2A—C3A—C4A—N4A179.93 (16)N5—C5—C6—C1177.13 (12)
N4A—C4A—C5A—C6A179.12 (14)C4—C5—C6—C11.1 (2)
C3A—C4A—C5A—C6A0.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···O11i0.89 (2)1.88 (2)2.7569 (16)168 (2)
N4A—H41A···O120.958 (19)1.924 (19)2.845 (2)160.8 (17)
N4A—H42A···O11ii0.936 (19)2.02 (2)2.8905 (19)154.0 (18)
N4A—H42A···O12ii0.936 (19)2.53 (2)3.1033 (18)119.9 (14)
N4A—H43A···O11Aiii1.005 (19)1.783 (19)2.785 (2)174.4 (19)
C5A—H5A···O11Aiv0.932.433.317 (2)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12NO+·C7H3N2O6
Mr349.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)15.9566 (19), 5.7844 (5), 17.4118 (14)
β (°) 102.811 (10)
V3)1567.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5928, 3061, 2203
Rint0.017
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 0.98
No. of reflections3061
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11A···O11i0.89 (2)1.88 (2)2.7569 (16)168 (2)
N4A—H41A···O120.958 (19)1.924 (19)2.845 (2)160.8 (17)
N4A—H42A···O11ii0.936 (19)2.02 (2)2.8905 (19)154.0 (18)
N4A—H42A···O12ii0.936 (19)2.53 (2)3.1033 (18)119.9 (14)
N4A—H43A···O11Aiii1.005 (19)1.783 (19)2.785 (2)174.4 (19)
C5A—H5A···O11Aiv0.93002.43003.317 (2)161.00
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology.

References

First citationAakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 6, 159–165.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEtter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10–12.  CSD CrossRef CAS Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e144–e146.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991a). Aust. J. Chem. 44, 809–816.  CrossRef CAS Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1991b). Aust. J. Chem. 44, 1017–1022.  CrossRef CAS Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1992). Acta Cryst. C48, 1265–1267.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1993). Aust. J. Chem. 46, 921–927.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRanganathan, A. & Pedireddi, V. R. (1998). Tetrahedron Lett. 39, 1803–1806.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds