metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-2-[(Benzo­thia­zol-2-yl-2κN)hydrazono­methyl-2κN]-6-meth­oxy­phenolato-1:2κ3O1,O6:O1}{2-[(benzo­thia­zol-2-yl-1κN)hydrazono­methyl-1κN]-6-meth­oxy­phenolato-1κO1}(methanol-2κO)(nitrato-2κO)dicopper(II) nitrate

aDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
*Correspondence e-mail: fehong@dragon.nchu.edu.tw

(Received 17 July 2009; accepted 11 August 2009; online 15 August 2009)

The title complex, [Cu2(C15H12N3O2S)2(NO3)(CH3OH)]NO3, has two CuII centres coordinated by two deprotonated 2-[(benzothia­zol-2-yl)hydrazonometh­yl]-6-methoxy­phenol ligands, a methanol mol­ecule and a nitrate ion. Both CuII centres are penta­coordinated in a distorted square-pyramidal fashion. The crystal structure is stabilized by N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For the preparation of the ligand, see: Patil et al. (2009[Patil, S. A., Weng, C.-M., Huang, P.-C. & Hong, F.-E. (2009). Tetrahedron, 65, 2889-2897.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H12N3O2S)2(NO3)(CH4O)]NO3

  • Mr = 879.81

  • Monoclinic, P 21 /n

  • a = 11.6893 (12) Å

  • b = 18.9172 (18) Å

  • c = 16.8910 (17) Å

  • β = 91.869 (2)°

  • V = 3733.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 298 K

  • 0.60 × 0.50 × 0.20 mm

Data collection
  • Oxford KM-4-CCD/Sapphire diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.505, Tmax = 0.778

  • 16985 measured reflections

  • 7175 independent reflections

  • 5506 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.01

  • 7175 reflections

  • 491 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O11 0.86 1.92 2.730 (4) 156
N5—H5A⋯O9i 0.86 1.90 2.728 (4) 160
O12—H12B⋯O1 0.77 (6) 2.04 (5) 2.763 (4) 157 (5)
O12—H12B⋯O2 0.77 (6) 2.44 (5) 3.025 (4) 134 (5)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dinuclear copper complexes chelated by ligands with biological activity are of interest to many because of their relevance to the active sites of some characterized metalloenzymes. We report herein the synthesis and crystal structure of a bis-N,N,O-tridentate ligand chelated dinuclear copper complex, a potential model for biologically relevant studies.

The structure of the title compound reveals that it is a bis-N,N,O-ligands chelated di-copper complex (Figure 1). These two copper atoms are held together by a bridging oxygen, which is deprotonated from the hydroxyl group of (2-benzothiazol-2-yl-hydrazonomethyl)-6-methoxy-phenol (Patil et al., 2009). Both copper centers are penta-coordinated and their oxidation numbers are +2. The Cu(2) is coordinated by a MeOH and NO3- besides the deprotonated ligand. The methoxyl group of the deprotonated ligand acts as the coordinating site towards Cu(1). Another deprotonated ligand is solely chelated towards Cu(1).

Related literature top

For related literature, see: Patil et al. (2009).

Experimental top

A 100 ml round-bottomed Schlenk flask equipped with a magnetic stirbar and a rubber septum was charged with a N,N,O-tridentate ligand 2-(benzothiazol-2-yl-hydrazonomethyl)-6-methoxy-phenol (1) (0.30 mmol, 89.8 mg) with one molar equivalent of Cu(NO3)2.3H2O in MeOH. After stirred at room temperature for 2 h, the solvent was removed under reduced pressure. The dark-green residue was subjected to various spectroscopic methods as well as to grow crystals in MeOH. It was characterized later as the title compound (2). LRMS: m/s = 722 [M—CH3OH—NO3-]+; Anal. Calcd.: S, 7.85; N, 12.00; C, 45.58; H, 7.85; Found: S, 7.19; N, 11.94; C, 41.54; H, 7.19.

Refinement top

All H atoms bonded to N or C were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.86Å and C—H distances in the range 0.93–0.96 Å and Uiso(H)=1.2Ueq(C,N). The H atom bonded to O was freely refined.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids shown at the 20% probability level. Hydrogen atoms have been omitted for clarity.
{µ-2-[(Benzothiazol-2-yl-2κN)hydrazonomethyl-2κN]-6- methoxyphenolato-1:2κ3O1,O6:O1}{2-[(benzothiazol- 2-yl-1κN)hydrazonomethyl-1κN]-6-methoxyphenolato- 1κO1}(methanol-2κO)(nitrato-2κO)dicopper(II) nitrate top
Crystal data top
[Cu2(C15H12N3O2S)2(NO3)(CH4O)]NO3F(000) = 1792
Mr = 879.81Dx = 1.565 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7572 reflections
a = 11.6893 (12) Åθ = 2.4–26.1°
b = 18.9172 (18) ŵ = 1.32 mm1
c = 16.8910 (17) ÅT = 298 K
β = 91.869 (2)°Parallelepiped, green
V = 3733.1 (6) Å30.60 × 0.50 × 0.20 mm
Z = 4
Data collection top
KM-4-CCD/Sapphire [PLEASE CHECK; DEVICE COMPATIBLE WITH BRUKER SOFTWARE?]
diffractometer
7175 independent reflections
Radiation source: fine-focus sealed tube5506 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 26.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 148
Tmin = 0.505, Tmax = 0.778k = 1922
16985 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
7175 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu2(C15H12N3O2S)2(NO3)(CH4O)]NO3V = 3733.1 (6) Å3
Mr = 879.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.6893 (12) ŵ = 1.32 mm1
b = 18.9172 (18) ÅT = 298 K
c = 16.8910 (17) Å0.60 × 0.50 × 0.20 mm
β = 91.869 (2)°
Data collection top
KM-4-CCD/Sapphire [PLEASE CHECK; DEVICE COMPATIBLE WITH BRUKER SOFTWARE?]
diffractometer
7175 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5506 reflections with I > 2σ(I)
Tmin = 0.505, Tmax = 0.778Rint = 0.028
16985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.73 e Å3
7175 reflectionsΔρmin = 0.76 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.16897 (3)0.19196 (2)0.98737 (2)0.04552 (13)
Cu10.17847 (3)0.33814 (2)0.88954 (2)0.04699 (13)
S20.09665 (9)0.01021 (5)1.10524 (6)0.0695 (3)
S10.03325 (9)0.32071 (6)0.67004 (6)0.0722 (3)
O50.26399 (15)0.25207 (11)0.92201 (12)0.0458 (5)
N30.1212 (2)0.30451 (15)0.78293 (14)0.0502 (6)
O60.03427 (17)0.24777 (12)0.94855 (13)0.0524 (5)
C60.1412 (3)0.49632 (18)0.9682 (2)0.0560 (8)
N10.0858 (2)0.42009 (15)0.85961 (15)0.0527 (6)
C160.3787 (2)0.25018 (17)0.91594 (17)0.0473 (7)
N60.0880 (2)0.11744 (14)1.04800 (15)0.0522 (6)
O10.2106 (2)0.37760 (12)0.99117 (13)0.0625 (6)
C90.0410 (3)0.34724 (18)0.75554 (19)0.0536 (8)
N20.0180 (3)0.40770 (16)0.79262 (17)0.0645 (8)
H2A0.03460.43650.77620.077*
O80.1039 (2)0.23804 (17)0.86045 (18)0.0861 (9)
N70.0182 (2)0.21226 (16)0.89173 (16)0.0554 (7)
N50.2648 (2)0.06424 (16)1.03947 (17)0.0622 (7)
H5A0.31140.02971.04790.075*
O70.0236 (2)0.15521 (14)0.87204 (15)0.0659 (6)
C230.4013 (3)0.13224 (18)0.98134 (19)0.0533 (8)
H23A0.45120.09510.99280.064*
C240.1555 (3)0.06304 (18)1.06209 (18)0.0546 (8)
C210.4457 (2)0.19332 (18)0.94236 (19)0.0523 (8)
O20.3007 (2)0.40931 (16)1.12742 (15)0.0803 (8)
C770.0805 (3)0.48056 (19)0.8948 (2)0.0573 (8)
H7A0.03520.51570.87150.069*
O40.36346 (19)0.36025 (15)0.85199 (17)0.0738 (7)
C150.1322 (3)0.24591 (19)0.73275 (17)0.0532 (8)
C300.0217 (3)0.1033 (2)1.07330 (19)0.0578 (8)
C40.1840 (3)0.5837 (2)1.0687 (3)0.0768 (11)
H4A0.18020.63001.08710.092*
C140.2113 (3)0.1919 (2)0.7406 (2)0.0673 (9)
H14A0.26440.19160.78280.081*
C10.1997 (3)0.44431 (19)1.0125 (2)0.0563 (8)
C20.2487 (3)0.4635 (2)1.0880 (2)0.0632 (9)
C200.5644 (3)0.1947 (2)0.9317 (3)0.0716 (11)
H20A0.60880.15650.94890.086*
C260.1375 (4)0.0105 (3)1.1318 (2)0.0813 (12)
H26A0.14480.03491.15230.098*
C50.1351 (3)0.5667 (2)0.9977 (3)0.0702 (10)
H5B0.09700.60120.96780.084*
C100.0540 (3)0.2456 (2)0.66823 (19)0.0617 (9)
C170.4335 (3)0.3070 (2)0.8788 (2)0.0608 (9)
C250.0335 (3)0.0349 (2)1.10562 (19)0.0633 (9)
C30.2409 (3)0.5318 (2)1.1151 (2)0.0734 (11)
H3A0.27320.54391.16430.088*
C180.5501 (3)0.3068 (3)0.8693 (3)0.0833 (12)
H18A0.58490.34450.84430.100*
C290.1147 (3)0.1487 (2)1.0691 (2)0.0710 (10)
H29A0.10800.19421.04900.085*
C280.2188 (4)0.1238 (3)1.0962 (3)0.0901 (13)
H28A0.28250.15331.09400.108*
C190.6154 (3)0.2502 (3)0.8970 (3)0.0924 (14)
H19A0.69440.25050.89170.111*
C220.4085 (4)0.4258 (3)0.8341 (4)0.139 (3)
H22A0.48710.42050.82030.209*
H22B0.40400.45630.87930.209*
H22C0.36570.44600.79020.209*
C270.2291 (4)0.0558 (3)1.1265 (3)0.0957 (15)
H27A0.29990.04061.14350.115*
N40.2957 (2)0.12581 (14)1.00154 (14)0.0490 (6)
O110.1204 (2)0.49196 (19)0.69980 (17)0.0884 (9)
N80.0457 (3)0.52181 (17)0.6607 (2)0.0697 (8)
O100.0387 (3)0.5485 (2)0.6927 (2)0.1137 (12)
O90.0595 (3)0.52210 (19)0.58779 (18)0.1112 (13)
C130.2104 (4)0.1384 (2)0.6849 (2)0.0814 (12)
H13A0.26280.10150.69010.098*
C110.0523 (4)0.1918 (2)0.6117 (2)0.0756 (11)
H11A0.00070.19170.56950.091*
C70.3442 (4)0.4214 (3)1.2059 (2)0.0878 (14)
H7B0.37840.37871.22640.132*
H7C0.28270.43531.23890.132*
H7D0.40070.45821.20540.132*
O120.2106 (3)0.26246 (18)1.09179 (16)0.0770 (8)
C120.1321 (4)0.1391 (3)0.6212 (2)0.0864 (13)
H12A0.13390.10290.58400.104*
C310.1538 (6)0.2642 (4)1.1638 (3)0.142 (3)
H31A0.18840.29931.19790.213*
H31B0.15940.21871.18880.213*
H31C0.07460.27571.15380.213*
H12B0.217 (4)0.300 (3)1.075 (3)0.085 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.03765 (19)0.0485 (2)0.0502 (2)0.00094 (14)0.00239 (15)0.00548 (16)
Cu10.0459 (2)0.0472 (2)0.0473 (2)0.00129 (15)0.00812 (15)0.00114 (16)
S20.0852 (6)0.0598 (6)0.0633 (5)0.0080 (5)0.0023 (5)0.0163 (4)
S10.0756 (6)0.0823 (7)0.0568 (5)0.0011 (5)0.0248 (5)0.0035 (4)
O50.0333 (9)0.0516 (12)0.0522 (11)0.0009 (8)0.0043 (8)0.0040 (9)
N30.0497 (14)0.0577 (17)0.0431 (13)0.0041 (12)0.0030 (11)0.0043 (12)
O60.0416 (10)0.0542 (13)0.0613 (12)0.0022 (9)0.0004 (9)0.0037 (10)
C60.0513 (17)0.050 (2)0.0670 (19)0.0092 (14)0.0074 (15)0.0052 (16)
N10.0525 (14)0.0544 (17)0.0506 (14)0.0008 (12)0.0082 (11)0.0068 (12)
C160.0336 (13)0.059 (2)0.0488 (16)0.0051 (13)0.0022 (12)0.0062 (14)
N60.0523 (14)0.0516 (16)0.0523 (14)0.0021 (12)0.0026 (11)0.0039 (12)
O10.0790 (15)0.0510 (15)0.0562 (12)0.0005 (12)0.0189 (11)0.0077 (11)
C90.0526 (17)0.059 (2)0.0485 (16)0.0012 (15)0.0075 (14)0.0087 (15)
N20.0694 (18)0.064 (2)0.0592 (16)0.0080 (15)0.0179 (14)0.0060 (14)
O80.0420 (12)0.109 (2)0.106 (2)0.0093 (14)0.0193 (13)0.0145 (18)
N70.0357 (12)0.0636 (19)0.0665 (16)0.0058 (12)0.0028 (12)0.0108 (14)
N50.0587 (16)0.0533 (17)0.0744 (18)0.0074 (13)0.0016 (14)0.0136 (14)
O70.0718 (15)0.0569 (16)0.0686 (15)0.0064 (12)0.0034 (12)0.0010 (12)
C230.0426 (15)0.056 (2)0.0607 (18)0.0106 (14)0.0063 (13)0.0105 (15)
C240.0632 (19)0.052 (2)0.0483 (16)0.0020 (15)0.0053 (14)0.0049 (14)
C210.0378 (14)0.059 (2)0.0601 (18)0.0012 (13)0.0024 (13)0.0113 (15)
O20.0884 (18)0.088 (2)0.0625 (14)0.0065 (15)0.0262 (13)0.0214 (14)
C770.0533 (18)0.050 (2)0.069 (2)0.0012 (14)0.0025 (15)0.0059 (16)
O40.0513 (13)0.0722 (17)0.0977 (19)0.0148 (12)0.0011 (13)0.0295 (15)
C150.0566 (18)0.060 (2)0.0428 (15)0.0086 (15)0.0028 (13)0.0015 (14)
C300.0557 (18)0.066 (2)0.0514 (17)0.0089 (16)0.0030 (14)0.0011 (16)
C40.070 (2)0.060 (2)0.101 (3)0.0203 (19)0.011 (2)0.025 (2)
C140.063 (2)0.077 (3)0.063 (2)0.0043 (18)0.0019 (17)0.0098 (18)
C10.0503 (17)0.057 (2)0.0614 (18)0.0097 (15)0.0020 (14)0.0087 (16)
C20.0546 (18)0.065 (2)0.070 (2)0.0084 (16)0.0035 (16)0.0174 (18)
C200.0400 (16)0.074 (3)0.101 (3)0.0057 (17)0.0024 (18)0.012 (2)
C260.083 (3)0.087 (3)0.075 (2)0.024 (2)0.014 (2)0.007 (2)
C50.067 (2)0.051 (2)0.094 (3)0.0070 (17)0.013 (2)0.0040 (19)
C100.065 (2)0.072 (2)0.0476 (17)0.0147 (17)0.0009 (15)0.0049 (16)
C170.0432 (16)0.070 (2)0.069 (2)0.0122 (16)0.0021 (15)0.0014 (18)
C250.071 (2)0.070 (2)0.0492 (17)0.0137 (18)0.0005 (15)0.0024 (16)
C30.062 (2)0.076 (3)0.082 (2)0.0196 (19)0.0017 (19)0.028 (2)
C180.0476 (19)0.089 (3)0.114 (3)0.018 (2)0.012 (2)0.007 (3)
C290.062 (2)0.080 (3)0.071 (2)0.0003 (19)0.0125 (18)0.007 (2)
C280.060 (2)0.117 (4)0.093 (3)0.004 (2)0.015 (2)0.000 (3)
C190.0401 (18)0.098 (3)0.140 (4)0.007 (2)0.010 (2)0.005 (3)
C220.083 (3)0.106 (4)0.229 (7)0.020 (3)0.000 (4)0.082 (5)
C270.079 (3)0.119 (4)0.091 (3)0.035 (3)0.022 (2)0.005 (3)
N40.0501 (13)0.0469 (15)0.0496 (13)0.0015 (11)0.0057 (11)0.0001 (11)
O110.0606 (15)0.123 (3)0.0823 (17)0.0176 (16)0.0054 (14)0.0302 (18)
N80.077 (2)0.0537 (19)0.078 (2)0.0003 (15)0.0022 (18)0.0040 (16)
O100.113 (3)0.099 (3)0.127 (3)0.026 (2)0.033 (2)0.002 (2)
O90.159 (3)0.103 (3)0.0727 (18)0.077 (2)0.011 (2)0.0064 (17)
C130.092 (3)0.078 (3)0.075 (2)0.009 (2)0.006 (2)0.019 (2)
C110.086 (3)0.087 (3)0.053 (2)0.016 (2)0.0083 (19)0.0095 (19)
C70.079 (3)0.122 (4)0.062 (2)0.002 (3)0.020 (2)0.024 (2)
O120.109 (2)0.068 (2)0.0537 (14)0.0073 (17)0.0022 (14)0.0026 (14)
C120.105 (3)0.085 (3)0.070 (2)0.014 (3)0.005 (2)0.024 (2)
C310.186 (7)0.147 (6)0.095 (4)0.047 (5)0.047 (4)0.037 (4)
Geometric parameters (Å, º) top
Cu2—N41.948 (3)C30—C291.386 (5)
Cu2—O51.956 (2)C30—C251.413 (5)
Cu2—O61.989 (2)C4—C51.351 (6)
Cu2—N61.999 (3)C4—C31.409 (6)
Cu2—O122.252 (3)C4—H4A0.9300
Cu1—O11.898 (2)C14—C131.383 (5)
Cu1—N11.948 (3)C14—H14A0.9300
Cu1—O51.979 (2)C1—C21.428 (5)
Cu1—N32.004 (2)C2—C31.376 (5)
Cu1—O42.311 (2)C20—C191.352 (6)
S2—C241.720 (3)C20—H20A0.9300
S2—C251.745 (4)C26—C271.372 (7)
S1—C91.734 (3)C26—C251.386 (5)
S1—C101.750 (4)C26—H26A0.9300
O5—C161.349 (3)C5—H5B0.9300
N3—C91.311 (4)C10—C111.394 (5)
N3—C151.404 (4)C17—C181.378 (5)
O6—N71.308 (4)C3—H3A0.9300
C6—C11.401 (5)C18—C191.387 (7)
C6—C51.424 (5)C18—H18A0.9300
C6—C771.440 (5)C29—C281.396 (6)
N1—C771.291 (4)C29—H29A0.9300
N1—N21.380 (4)C28—C271.392 (7)
C16—C211.395 (5)C28—H28A0.9300
C16—C171.409 (5)C19—H19A0.9300
N6—C241.314 (4)C22—H22A0.9600
N6—C301.390 (4)C22—H22B0.9600
O1—C11.320 (4)C22—H22C0.9600
C9—N21.336 (4)C27—H27A0.9300
N2—H2A0.8600O11—N81.247 (4)
O8—N71.219 (3)N8—O101.219 (4)
N7—O71.235 (4)N8—O91.237 (4)
N5—C241.345 (4)C13—C121.390 (6)
N5—N41.383 (4)C13—H13A0.9300
N5—H5A0.8600C11—C121.371 (6)
C23—N41.298 (4)C11—H11A0.9300
C23—C211.435 (5)C7—H7B0.9600
C23—H23A0.9300C7—H7C0.9600
C21—C201.405 (4)C7—H7D0.9600
O2—C21.355 (5)O12—C311.405 (6)
O2—C71.423 (4)O12—H12B0.77 (5)
C77—H7A0.9300C12—H12A0.9300
O4—C171.366 (4)C31—H31A0.9600
O4—C221.385 (5)C31—H31B0.9600
C15—C141.381 (5)C31—H31C0.9600
C15—C101.399 (4)
N4—Cu2—O589.97 (10)C13—C14—H14A120.5
N4—Cu2—O6166.43 (10)C15—C14—H14A120.5
O5—Cu2—O687.90 (8)O1—C1—C6125.1 (3)
N4—Cu2—N681.65 (11)O1—C1—C2116.6 (3)
O5—Cu2—N6170.53 (10)C6—C1—C2118.3 (3)
O6—Cu2—N699.22 (10)O2—C2—C3125.5 (3)
N4—Cu2—O1298.05 (11)O2—C2—C1114.0 (3)
O5—Cu2—O1289.17 (11)C3—C2—C1120.4 (4)
O6—Cu2—O1295.31 (11)C19—C20—C21121.4 (4)
N6—Cu2—O1296.34 (12)C19—C20—H20A119.3
O1—Cu1—N190.78 (11)C21—C20—H20A119.3
O1—Cu1—O589.41 (9)C27—C26—C25117.5 (4)
N1—Cu1—O5176.51 (10)C27—C26—H26A121.3
O1—Cu1—N3171.04 (11)C25—C26—H26A121.3
N1—Cu1—N381.54 (11)C4—C5—C6120.6 (4)
O5—Cu1—N397.97 (10)C4—C5—H5B119.7
O1—Cu1—O491.03 (11)C6—C5—H5B119.7
N1—Cu1—O4107.58 (10)C11—C10—C15122.0 (4)
O5—Cu1—O475.89 (8)C11—C10—S1127.5 (3)
N3—Cu1—O495.67 (10)C15—C10—S1110.4 (3)
C24—S2—C2588.19 (17)O4—C17—C18123.2 (4)
C9—S1—C1088.49 (16)O4—C17—C16115.8 (3)
C16—O5—Cu2127.72 (19)C18—C17—C16121.0 (4)
C16—O5—Cu1119.69 (19)C26—C25—C30121.7 (4)
Cu2—O5—Cu1110.11 (9)C26—C25—S2127.7 (3)
C9—N3—C15110.6 (3)C30—C25—S2110.5 (3)
C9—N3—Cu1109.6 (2)C2—C3—C4120.3 (4)
C15—N3—Cu1139.4 (2)C2—C3—H3A119.8
N7—O6—Cu2108.46 (19)C4—C3—H3A119.8
C1—C6—C5119.9 (3)C17—C18—C19119.9 (4)
C1—C6—C77122.2 (3)C17—C18—H18A120.0
C5—C6—C77117.8 (3)C19—C18—H18A120.0
C77—N1—N2119.5 (3)C30—C29—C28117.7 (4)
C77—N1—Cu1128.3 (2)C30—C29—H29A121.2
N2—N1—Cu1112.2 (2)C28—C29—H29A121.2
O5—C16—C21123.0 (3)C27—C28—C29121.3 (5)
O5—C16—C17118.7 (3)C27—C28—H28A119.3
C21—C16—C17118.2 (3)C29—C28—H28A119.3
C24—N6—C30110.4 (3)C20—C19—C18120.0 (4)
C24—N6—Cu2110.7 (2)C20—C19—H19A120.0
C30—N6—Cu2138.6 (2)C18—C19—H19A120.0
C1—O1—Cu1127.2 (2)O4—C22—H22A109.5
N3—C9—N2121.0 (3)O4—C22—H22B109.5
N3—C9—S1116.6 (3)H22A—C22—H22B109.5
N2—C9—S1122.4 (2)O4—C22—H22C109.5
C9—N2—N1114.2 (3)H22A—C22—H22C109.5
C9—N2—H2A122.9H22B—C22—H22C109.5
N1—N2—H2A122.9C26—C27—C28121.6 (4)
O8—N7—O7124.0 (3)C26—C27—H27A119.2
O8—N7—O6118.1 (3)C28—C27—H27A119.2
O7—N7—O6117.8 (2)C23—N4—N5117.8 (3)
C24—N5—N4114.3 (3)C23—N4—Cu2129.3 (2)
C24—N5—H5A122.9N5—N4—Cu2112.9 (2)
N4—N5—H5A122.9O10—N8—O9121.2 (4)
N4—C23—C21123.9 (3)O10—N8—O11121.5 (4)
N4—C23—H23A118.1O9—N8—O11117.3 (4)
C21—C23—H23A118.1C14—C13—C12120.6 (4)
N6—C24—N5120.4 (3)C14—C13—H13A119.7
N6—C24—S2117.5 (3)C12—C13—H13A119.7
N5—C24—S2122.1 (3)C12—C11—C10117.2 (4)
C16—C21—C20119.4 (3)C12—C11—H11A121.4
C16—C21—C23124.1 (3)C10—C11—H11A121.4
C20—C21—C23116.5 (3)O2—C7—H7B109.5
C2—O2—C7118.5 (3)O2—C7—H7C109.5
N1—C77—C6123.4 (3)H7B—C7—H7C109.5
N1—C77—H7A118.3O2—C7—H7D109.5
C6—C77—H7A118.3H7B—C7—H7D109.5
C17—O4—C22120.3 (3)H7C—C7—H7D109.5
C17—O4—Cu1109.36 (19)C31—O12—Cu2126.5 (3)
C22—O4—Cu1126.0 (3)C31—O12—H12B111 (4)
C14—C15—C10119.4 (3)Cu2—O12—H12B106 (4)
C14—C15—N3126.9 (3)C11—C12—C13121.8 (4)
C10—C15—N3113.8 (3)C11—C12—H12A119.1
C29—C30—N6126.5 (3)C13—C12—H12A119.1
C29—C30—C25120.1 (3)O12—C31—H31A109.5
N6—C30—C25113.4 (3)O12—C31—H31B109.5
C5—C4—C3120.4 (4)H31A—C31—H31B109.5
C5—C4—H4A119.8O12—C31—H31C109.5
C3—C4—H4A119.8H31A—C31—H31C109.5
C13—C14—C15119.1 (4)H31B—C31—H31C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O110.861.922.730 (4)156
N5—H5A···O9i0.861.902.728 (4)160
O12—H12B···O10.77 (6)2.04 (5)2.763 (4)157 (5)
O12—H12B···O20.77 (6)2.44 (5)3.025 (4)134 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C15H12N3O2S)2(NO3)(CH4O)]NO3
Mr879.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.6893 (12), 18.9172 (18), 16.8910 (17)
β (°) 91.869 (2)
V3)3733.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.60 × 0.50 × 0.20
Data collection
DiffractometerKM-4-CCD/Sapphire [PLEASE CHECK; DEVICE COMPATIBLE WITH BRUKER SOFTWARE?]
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.505, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
16985, 7175, 5506
Rint0.028
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.01
No. of reflections7175
No. of parameters491
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.76

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O110.86001.92002.730 (4)156.00
N5—H5A···O9i0.86001.90002.728 (4)160.00
O12—H12B···O10.77 (6)2.04 (5)2.763 (4)157 (5)
O12—H12B···O20.77 (6)2.44 (5)3.025 (4)134 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the National Science Council of the Republic of China (NSC-95–2113-M-005–015-MY3) is gratefully appreciated.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatil, S. A., Weng, C.-M., Huang, P.-C. & Hong, F.-E. (2009). Tetrahedron, 65, 2889–2897.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds