metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­(ethanol)bis­­(μ3-pyridine-2,3-di­carboxyl­ato)dimanganese(II)] monohydrate]

aDepartment of Chemistry, Liaoning Medical University, Jinzhou 121001, People's Republic of China
*Correspondence e-mail: wuhua2009@yahoo.com.cn

(Received 18 July 2009; accepted 12 August 2009; online 19 August 2009)

The title compound, {[Mn2(C7H3NO4)2(C2H5OH)(H2O)2]·H2O}n, is a three-dimensional polymer. There are two symmetry-independent MnII centres with different coordination environments: one MnII atom is coordinated by four O atoms from four ligands and two N atoms from two ligands, the other MnII atom is coordinated by three O atoms from two ligands, two water O atoms and the O atom of an ethanol mol­ecule. The crystal structure is stabilized by O—H⋯O hydrogen bonds.

Related literature

For a related structure, see: Li & Li (2004[Li, L.-J. & Li, Y. (2004). J. Mol. Struct. pp. 199-203.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C7H3NO4)2(C2H6O)(H2O)2]·H2O

  • Mr = 540.20

  • Triclinic, [P \overline 1]

  • a = 8.4972 (3) Å

  • b = 10.2676 (4) Å

  • c = 12.6508 (4) Å

  • α = 72.661 (3)°

  • β = 74.859 (3)°

  • γ = 70.588 (3)°

  • V = 977.43 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.34 × 0.23 × 0.19 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.765, Tmax = 0.876 (expected range = 0.674–0.772)

  • 11238 measured reflections

  • 4623 independent reflections

  • 3432 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.124

  • S = 1.04

  • 4623 reflections

  • 310 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.89 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O3i 0.827 (18) 2.29 (3) 3.083 (3) 161 (5)
O1W—H1B⋯O1 0.872 (18) 2.51 (4) 2.847 (4) 104 (3)
O1W—H1B⋯O3Wi 0.872 (18) 2.63 (5) 3.034 (4) 109 (4)
O2W—H2B⋯O5ii 0.833 (18) 1.91 (2) 2.730 (3) 168 (5)
O3W—H3B⋯O1W 0.777 (16) 2.14 (2) 2.893 (4) 162 (3)
O3W—H3A⋯O6ii 0.793 (16) 1.99 (2) 2.699 (3) 150 (4)
O9—H9A⋯O8iii 0.821 (19) 2.10 (3) 2.776 (3) 140 (3)
O9—H9A⋯O4iv 0.821 (19) 2.319 (18) 3.006 (3) 142 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y+1, z; (iii) -x+2, -y+1, -z; (iv) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound possesses two crystallographically unique manganese cations (Fig. 1, Table 1). The Mn(1) cation :is coordinated by four oxygen atoms from four L ligands and two N atoms from two L ligands. Mn(2) cation is coordinated by three oxygen atoms from two L ligands, two water molecules and one ethanol molecule . The Mn—O and Mn—N distances are within the normal range observed in the structure of Li & Li (2004). In the title compound, the manganese centres are bridged by L ligands to form an infinite two-dimensional layer structure. Further, the water molecules and ethanol are involved in formation of hydrogen-bonding interations, leading to a three-dimensional structure.

Related literature top

For a relatedstructure, see: Li & Li (2004).

Experimental top

A mixture of pyridine-2,3-dicarboxylic acid (0.05 g, 0.3 mmol), MnAc2.4H2O (0.07 g, 0.3 mmol), EtOH (3 ml) and H2O (7 ml) was sealed in a 17 ml Teflon-lined stainless-steel cotainer. The container was heated to 140 °C and held at this temperature for 72 h. It was then cooled to room temperature at a rate of 10 °C.h-1. The colorless blocks were collected in 35% yield.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H)= 1.2Ueq(C). H-atoms bonded to water molecules were located in a different Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid (30%) plot of the title compound showing the coordination environment around the Mn atoms. [symmetry code: (A) -x + 3, -y + 1, -z; (B) -x + 2, -y + 1,-z + 1; (c) -x + 2, -y + 1, -z].
Poly[[diaqua(ethanol)bis(µ3-pyridine-2,3-dicarboxylato)dimanganese(II)] monohydrate] top
Crystal data top
[Mn2(C7H3NO4)2(C2H6O)(H2O)2]·H2OZ = 2
Mr = 540.20F(000) = 548
Triclinic, P1Dx = 1.835 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4972 (3) ÅCell parameters from 4623 reflections
b = 10.2676 (4) Åθ = 1.7–29.3°
c = 12.6508 (4) ŵ = 1.36 mm1
α = 72.661 (3)°T = 293 K
β = 74.859 (3)°Block, colorless
γ = 70.588 (3)°0.34 × 0.23 × 0.19 mm
V = 977.43 (6) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4623 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 29.3°, θmin = 1.7°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1114
Tmin = 0.765, Tmax = 0.876l = 1716
11238 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0787P)2]
where P = (Fo2 + 2Fc2)/3
4623 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.72 e Å3
10 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Mn2(C7H3NO4)2(C2H6O)(H2O)2]·H2Oγ = 70.588 (3)°
Mr = 540.20V = 977.43 (6) Å3
Triclinic, P1Z = 2
a = 8.4972 (3) ÅMo Kα radiation
b = 10.2676 (4) ŵ = 1.36 mm1
c = 12.6508 (4) ÅT = 293 K
α = 72.661 (3)°0.34 × 0.23 × 0.19 mm
β = 74.859 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
4623 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3432 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.876Rint = 0.023
11238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03810 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.72 e Å3
4623 reflectionsΔρmin = 0.89 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn11.27969 (5)0.49235 (4)0.24918 (3)0.02484 (13)
Mn20.59087 (5)0.85545 (4)0.26515 (3)0.02779 (14)
C10.7656 (3)0.5490 (3)0.4552 (2)0.0231 (5)
C20.7464 (4)0.4128 (3)0.4991 (2)0.0308 (6)
H20.65220.39860.55340.037*
C30.8660 (4)0.2984 (3)0.4627 (3)0.0336 (7)
H30.85220.20740.49000.040*
C41.0063 (4)0.3234 (3)0.3846 (3)0.0336 (7)
H41.08830.24690.36040.040*
C50.9105 (3)0.5653 (3)0.3738 (2)0.0228 (5)
C60.9532 (3)0.7047 (3)0.3163 (2)0.0230 (5)
C70.6300 (3)0.6661 (3)0.5036 (2)0.0247 (6)
C81.2344 (5)0.6470 (3)0.1599 (3)0.0461 (9)
H81.23220.67280.23660.055*
C91.3034 (4)0.5069 (3)0.1091 (2)0.0262 (6)
C101.3014 (3)0.4728 (3)0.0062 (2)0.0248 (6)
C111.1694 (6)0.7478 (4)0.0978 (3)0.0575 (11)
H111.12590.84280.13170.069*
C121.1699 (5)0.7052 (3)0.0170 (3)0.0510 (10)
H121.12260.77270.06000.061*
C131.3785 (4)0.3243 (3)0.0709 (2)0.0280 (6)
C141.3882 (4)0.4007 (3)0.1817 (2)0.0247 (6)
C150.1882 (8)0.9931 (7)0.2423 (7)0.112 (2)
H17A0.17391.01260.16500.135*
H17B0.22141.07250.24730.135*
C160.0088 (13)1.0105 (12)0.3108 (9)0.186 (4)
H18A0.06151.10330.28270.279*
H18B0.01180.99940.38840.279*
H18C0.03680.93990.30440.279*
N11.0296 (3)0.4528 (2)0.34232 (19)0.0269 (5)
N21.2358 (3)0.5708 (2)0.06771 (19)0.0311 (5)
O10.5328 (3)0.7618 (2)0.44223 (16)0.0346 (5)
O20.6140 (3)0.6560 (2)0.60686 (16)0.0359 (5)
O30.8368 (3)0.8183 (2)0.31103 (17)0.0329 (5)
O90.3290 (3)0.8821 (3)0.2514 (3)0.0522 (7)
O41.1066 (2)0.6962 (2)0.27672 (16)0.0301 (4)
O3W0.5052 (4)1.0585 (2)0.3092 (2)0.0479 (6)
O51.4375 (3)0.2271 (2)0.02105 (17)0.0443 (6)
O61.3777 (3)0.3112 (2)0.17400 (15)0.0346 (5)
O1W0.2771 (5)0.9922 (4)0.5189 (3)0.0725 (9)
O71.3037 (3)0.3305 (2)0.19511 (16)0.0308 (4)
O81.5393 (3)0.3966 (2)0.22933 (17)0.0375 (5)
O2W0.6507 (4)0.9652 (3)0.0894 (2)0.0520 (6)
H9A0.316 (3)0.806 (3)0.253 (4)0.078*
H3A0.502 (6)1.1229 (18)0.2557 (19)0.078*
H1A0.224 (6)1.047 (3)0.561 (3)0.078*
H1B0.312 (6)0.911 (3)0.565 (3)0.078*
H3B0.444 (5)1.058 (3)0.367 (2)0.078*
H2B0.575 (4)1.039 (3)0.070 (3)0.078*
H2A0.735 (4)0.957 (5)0.034 (3)0.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0302 (2)0.0226 (2)0.0194 (2)0.00310 (17)0.00298 (15)0.00753 (16)
Mn20.0325 (2)0.0222 (2)0.0268 (2)0.00084 (18)0.01131 (17)0.00549 (17)
C10.0275 (13)0.0246 (14)0.0169 (11)0.0044 (11)0.0081 (10)0.0041 (10)
C20.0356 (16)0.0301 (16)0.0276 (14)0.0129 (13)0.0044 (12)0.0045 (12)
C30.0442 (18)0.0216 (14)0.0356 (15)0.0107 (13)0.0084 (13)0.0044 (12)
C40.0388 (17)0.0234 (15)0.0388 (16)0.0042 (12)0.0078 (13)0.0117 (12)
C50.0274 (13)0.0202 (13)0.0212 (12)0.0025 (10)0.0097 (10)0.0051 (10)
C60.0282 (14)0.0227 (13)0.0202 (12)0.0050 (11)0.0074 (10)0.0078 (10)
C70.0280 (14)0.0244 (14)0.0221 (13)0.0078 (11)0.0059 (10)0.0040 (11)
C80.071 (2)0.0328 (18)0.0285 (15)0.0059 (16)0.0250 (15)0.0073 (13)
C90.0315 (14)0.0242 (14)0.0237 (13)0.0045 (11)0.0094 (11)0.0065 (11)
C100.0270 (13)0.0227 (14)0.0240 (13)0.0031 (11)0.0061 (10)0.0071 (10)
C110.094 (3)0.0254 (18)0.0385 (18)0.0162 (18)0.0316 (19)0.0071 (15)
C120.080 (3)0.0265 (17)0.0387 (18)0.0139 (16)0.0243 (17)0.0165 (14)
C130.0343 (15)0.0239 (14)0.0243 (13)0.0040 (12)0.0064 (11)0.0070 (11)
C140.0335 (15)0.0207 (13)0.0177 (12)0.0019 (11)0.0094 (10)0.0034 (10)
C150.076 (4)0.094 (5)0.180 (7)0.020 (3)0.040 (4)0.038 (5)
C160.156 (9)0.191 (10)0.215 (11)0.085 (8)0.053 (8)0.007 (8)
N10.0295 (12)0.0221 (12)0.0276 (11)0.0033 (9)0.0053 (9)0.0078 (9)
N20.0400 (14)0.0230 (12)0.0258 (12)0.0030 (10)0.0099 (10)0.0088 (10)
O10.0335 (11)0.0334 (12)0.0268 (10)0.0020 (9)0.0081 (8)0.0024 (8)
O20.0414 (12)0.0378 (12)0.0232 (10)0.0020 (10)0.0093 (8)0.0110 (9)
O30.0318 (11)0.0210 (10)0.0471 (12)0.0023 (8)0.0143 (9)0.0089 (9)
O90.0416 (13)0.0287 (13)0.0922 (19)0.0047 (10)0.0303 (13)0.0227 (13)
O40.0300 (10)0.0247 (10)0.0336 (10)0.0071 (8)0.0011 (8)0.0102 (8)
O3W0.0725 (18)0.0252 (12)0.0428 (13)0.0015 (12)0.0236 (13)0.0089 (10)
O50.0772 (17)0.0218 (11)0.0275 (11)0.0061 (10)0.0203 (11)0.0094 (9)
O60.0564 (14)0.0230 (10)0.0195 (9)0.0006 (9)0.0126 (9)0.0058 (8)
O1W0.078 (2)0.083 (2)0.074 (2)0.0251 (19)0.0054 (17)0.0475 (18)
O70.0334 (11)0.0302 (11)0.0317 (10)0.0053 (9)0.0095 (8)0.0120 (9)
O80.0367 (12)0.0396 (12)0.0402 (12)0.0140 (10)0.0035 (9)0.0199 (10)
O2W0.0574 (16)0.0420 (15)0.0408 (13)0.0039 (12)0.0133 (11)0.0058 (11)
Geometric parameters (Å, º) top
Mn1—O8i2.127 (2)C9—C101.392 (4)
Mn1—O62.1612 (19)C9—C141.510 (4)
Mn1—O2ii2.178 (2)C10—N21.339 (3)
Mn1—O42.1874 (19)C10—C131.515 (4)
Mn1—N12.247 (2)C11—C121.386 (5)
Mn1—N22.281 (2)C11—H110.9300
Mn2—O12.1542 (19)C12—N21.333 (4)
Mn2—O3W2.158 (2)C12—H120.9300
Mn2—O7iii2.1653 (19)C13—O51.235 (3)
Mn2—O2W2.184 (2)C13—O61.269 (3)
Mn2—O32.195 (2)C14—O71.244 (3)
Mn2—O92.196 (3)C14—O81.260 (3)
C1—C21.390 (4)C15—O91.353 (6)
C1—C51.406 (4)C15—C161.526 (11)
C1—C71.516 (4)C15—H17A0.9700
C2—C31.382 (4)C15—H17B0.9700
C2—H20.9300C16—H18A0.9600
C3—C41.378 (4)C16—H18B0.9600
C3—H30.9300C16—H18C0.9600
C4—N11.337 (4)O2—Mn1ii2.178 (2)
C4—H40.9300O9—H9A0.821 (19)
C5—N11.344 (3)O3W—H3A0.793 (16)
C5—C61.515 (4)O3W—H3B0.777 (16)
C6—O31.251 (3)O1W—H1A0.827 (18)
C6—O41.252 (3)O1W—H1B0.872 (18)
C7—O21.254 (3)O7—Mn2iii2.1653 (19)
C7—O11.262 (3)O8—Mn1i2.127 (2)
C8—C111.368 (5)O2W—H2B0.833 (18)
C8—C91.383 (4)O2W—H2A0.863 (18)
C8—H80.9300
O8i—Mn1—O6113.83 (8)C8—C9—C10117.8 (2)
O8i—Mn1—O2ii87.96 (9)C8—C9—C14118.9 (2)
O6—Mn1—O2ii84.30 (7)C10—C9—C14123.1 (2)
O8i—Mn1—O480.75 (8)N2—C10—C9122.1 (3)
O6—Mn1—O4155.64 (8)N2—C10—C13114.9 (2)
O2ii—Mn1—O4116.80 (7)C9—C10—C13122.9 (2)
O8i—Mn1—N1146.77 (8)C8—C11—C12118.4 (3)
O6—Mn1—N198.13 (9)C8—C11—H11120.8
O2ii—Mn1—N186.36 (8)C12—C11—H11120.8
O4—Mn1—N172.82 (8)N2—C12—C11122.3 (3)
O8i—Mn1—N296.47 (9)N2—C12—H12118.8
O6—Mn1—N272.70 (8)C11—C12—H12118.8
O2ii—Mn1—N2156.42 (8)O5—C13—O6125.1 (3)
O4—Mn1—N286.78 (8)O5—C13—C10119.0 (2)
N1—Mn1—N2101.68 (9)O6—C13—C10115.9 (2)
O1—Mn2—O3W87.17 (9)O7—C14—O8125.0 (2)
O1—Mn2—O7iii101.72 (8)O7—C14—C9118.8 (2)
O3W—Mn2—O7iii170.69 (9)O8—C14—C9116.0 (2)
O1—Mn2—O2W175.41 (10)O9—C15—C16130.6 (7)
O3W—Mn2—O2W88.54 (10)O9—C15—H17A104.6
O7iii—Mn2—O2W82.49 (9)C16—C15—H17A104.6
O1—Mn2—O380.79 (8)O9—C15—H17B104.6
O3W—Mn2—O389.55 (9)C16—C15—H17B104.6
O7iii—Mn2—O389.15 (8)H17A—C15—H17B105.7
O2W—Mn2—O397.54 (10)C15—C16—H18A109.5
O1—Mn2—O989.22 (10)C15—C16—H18B109.5
O3W—Mn2—O988.39 (10)H18A—C16—H18B109.5
O7iii—Mn2—O994.44 (8)C15—C16—H18C109.5
O2W—Mn2—O992.30 (11)H18A—C16—H18C109.5
O3—Mn2—O9169.89 (10)H18B—C16—H18C109.5
C2—C1—C5117.7 (2)C4—N1—C5119.6 (2)
C2—C1—C7116.3 (2)C4—N1—Mn1123.72 (19)
C5—C1—C7125.9 (2)C5—N1—Mn1115.42 (18)
C3—C2—C1120.6 (3)C12—N2—C10119.0 (2)
C3—C2—H2119.7C12—N2—Mn1125.7 (2)
C1—C2—H2119.7C10—N2—Mn1114.86 (18)
C4—C3—C2117.9 (3)C7—O1—Mn2128.11 (17)
C4—C3—H3121.1C7—O2—Mn1ii138.53 (18)
C2—C3—H3121.1C6—O3—Mn2125.46 (18)
N1—C4—C3122.9 (3)C15—O9—Mn2134.9 (3)
N1—C4—H4118.6C15—O9—H9A114.7 (19)
C3—C4—H4118.6Mn2—O9—H9A110.5 (19)
N1—C5—C1121.3 (2)C6—O4—Mn1119.19 (17)
N1—C5—C6113.3 (2)Mn2—O3W—H3A112.5 (18)
C1—C5—C6125.5 (2)Mn2—O3W—H3B112.7 (18)
O3—C6—O4124.6 (3)H3A—O3W—H3B127 (3)
O3—C6—C5119.3 (2)C13—O6—Mn1121.35 (17)
O4—C6—C5116.0 (2)H1A—O1W—H1B103 (3)
O2—C7—O1123.2 (2)C14—O7—Mn2iii124.82 (17)
O2—C7—C1116.6 (2)C14—O8—Mn1i138.76 (18)
O1—C7—C1120.0 (2)Mn2—O2W—H2B113 (3)
C11—C8—C9120.3 (3)Mn2—O2W—H2A137 (3)
C11—C8—H8119.9H2B—O2W—H2A109 (3)
C9—C8—H8119.9
C5—C1—C2—C30.4 (4)C9—C10—N2—Mn1172.4 (2)
C7—C1—C2—C3178.2 (3)C13—C10—N2—Mn15.5 (3)
C1—C2—C3—C42.0 (5)O8i—Mn1—N2—C1263.8 (3)
C2—C3—C4—N10.9 (5)O6—Mn1—N2—C12176.8 (3)
C2—C1—C5—N12.4 (4)O2ii—Mn1—N2—C12163.6 (3)
C7—C1—C5—N1175.2 (3)O4—Mn1—N2—C1216.5 (3)
C2—C1—C5—C6179.8 (2)N1—Mn1—N2—C1288.2 (3)
C7—C1—C5—C62.6 (4)O8i—Mn1—N2—C10108.1 (2)
N1—C5—C6—O3158.8 (2)O6—Mn1—N2—C104.9 (2)
C1—C5—C6—O323.2 (4)O2ii—Mn1—N2—C108.3 (4)
N1—C5—C6—O421.0 (3)O4—Mn1—N2—C10171.6 (2)
C1—C5—C6—O4156.9 (3)N1—Mn1—N2—C1099.8 (2)
C2—C1—C7—O261.3 (4)O2—C7—O1—Mn2150.7 (2)
C5—C1—C7—O2116.2 (3)C1—C7—O1—Mn234.5 (4)
C2—C1—C7—O1113.9 (3)O3W—Mn2—O1—C7124.0 (3)
C5—C1—C7—O168.6 (4)O7iii—Mn2—O1—C753.2 (3)
C11—C8—C9—C101.0 (6)O2W—Mn2—O1—C7103.1 (11)
C11—C8—C9—C14174.5 (4)O3—Mn2—O1—C734.0 (2)
C8—C9—C10—N20.1 (5)O9—Mn2—O1—C7147.5 (2)
C14—C9—C10—N2175.3 (3)O1—C7—O2—Mn1ii171.5 (2)
C8—C9—C10—C13177.8 (3)C1—C7—O2—Mn1ii3.5 (4)
C14—C9—C10—C132.4 (4)O4—C6—O3—Mn2134.9 (2)
C9—C8—C11—C121.9 (7)C5—C6—O3—Mn244.9 (3)
C8—C11—C12—N22.0 (7)O1—Mn2—O3—C685.2 (2)
N2—C10—C13—O5178.0 (3)O3W—Mn2—O3—C6172.4 (2)
C9—C10—C13—O54.2 (5)O7iii—Mn2—O3—C616.8 (2)
N2—C10—C13—O62.6 (4)O2W—Mn2—O3—C699.1 (2)
C9—C10—C13—O6175.3 (3)O9—Mn2—O3—C694.2 (5)
C8—C9—C14—O794.3 (4)C16—C15—O9—Mn2127.9 (8)
C10—C9—C14—O790.4 (3)O1—Mn2—O9—C15103.6 (6)
C8—C9—C14—O882.0 (4)O3W—Mn2—O9—C1516.4 (6)
C10—C9—C14—O893.4 (3)O7iii—Mn2—O9—C15154.7 (6)
C3—C4—N1—C51.8 (4)O2W—Mn2—O9—C1572.1 (6)
C3—C4—N1—Mn1164.6 (2)O3—Mn2—O9—C1594.7 (7)
C1—C5—N1—C43.5 (4)O3—C6—O4—Mn1162.1 (2)
C6—C5—N1—C4178.5 (2)C5—C6—O4—Mn117.7 (3)
C1—C5—N1—Mn1164.02 (19)O8i—Mn1—O4—C6167.4 (2)
C6—C5—N1—Mn114.0 (3)O6—Mn1—O4—C663.3 (3)
O8i—Mn1—N1—C4132.7 (2)O2ii—Mn1—O4—C684.4 (2)
O6—Mn1—N1—C431.7 (2)N1—Mn1—O4—C67.78 (19)
O2ii—Mn1—N1—C452.0 (2)N2—Mn1—O4—C695.5 (2)
O4—Mn1—N1—C4171.6 (2)O5—C13—O6—Mn1177.4 (3)
N2—Mn1—N1—C4105.6 (2)C10—C13—O6—Mn12.1 (3)
O8i—Mn1—N1—C534.2 (3)O8i—Mn1—O6—C1385.8 (2)
O6—Mn1—N1—C5161.41 (19)O2ii—Mn1—O6—C13171.0 (2)
O2ii—Mn1—N1—C5114.9 (2)O4—Mn1—O6—C1337.5 (3)
O4—Mn1—N1—C54.62 (18)N1—Mn1—O6—C13103.5 (2)
N2—Mn1—N1—C587.50 (19)N2—Mn1—O6—C133.7 (2)
C11—C12—N2—C101.1 (6)O8—C14—O7—Mn2iii17.6 (4)
C11—C12—N2—Mn1170.5 (3)C9—C14—O7—Mn2iii166.56 (17)
C9—C10—N2—C120.2 (5)O7—C14—O8—Mn1i170.8 (2)
C13—C10—N2—C12178.0 (3)C9—C14—O8—Mn1i5.2 (4)
Symmetry codes: (i) x+3, y+1, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O3iv0.83 (2)2.29 (3)3.083 (3)161 (5)
O1W—H1B···O10.87 (2)2.51 (4)2.847 (4)104 (3)
O1W—H1B···O3Wiv0.87 (2)2.63 (5)3.034 (4)109 (4)
O2W—H2B···O5v0.83 (2)1.91 (2)2.730 (3)168 (5)
O3W—H3B···O1W0.78 (2)2.14 (2)2.893 (4)162 (3)
O3W—H3A···O6v0.79 (2)1.99 (2)2.699 (3)150 (4)
O9—H9A···O8iii0.82 (2)2.10 (3)2.776 (3)140 (3)
O9—H9A···O4vi0.82 (2)2.32 (2)3.006 (3)142 (3)
Symmetry codes: (iii) x+2, y+1, z; (iv) x+1, y+2, z+1; (v) x1, y+1, z; (vi) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C7H3NO4)2(C2H6O)(H2O)2]·H2O
Mr540.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4972 (3), 10.2676 (4), 12.6508 (4)
α, β, γ (°)72.661 (3), 74.859 (3), 70.588 (3)
V3)977.43 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.34 × 0.23 × 0.19
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.765, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
11238, 4623, 3432
Rint0.023
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.124, 1.04
No. of reflections4623
No. of parameters310
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.89

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O3i0.827 (18)2.29 (3)3.083 (3)161 (5)
O1W—H1B···O10.872 (18)2.51 (4)2.847 (4)104 (3)
O1W—H1B···O3Wi0.872 (18)2.63 (5)3.034 (4)109 (4)
O2W—H2B···O5ii0.833 (18)1.91 (2)2.730 (3)168 (5)
O3W—H3B···O1W0.777 (16)2.14 (2)2.893 (4)162 (3)
O3W—H3A···O6ii0.793 (16)1.99 (2)2.699 (3)150 (4)
O9—H9A···O8iii0.821 (19)2.10 (3)2.776 (3)140 (3)
O9—H9A···O4iv0.821 (19)2.319 (18)3.006 (3)142 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y+1, z; (iii) x+2, y+1, z; (iv) x1, y, z.
 

Acknowledgements

The authors thank the Science Foundation of Liaoning Medical University for supporting this work.

References

First citationLi, L.-J. & Li, Y. (2004). J. Mol. Struct. pp. 199–203.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds