organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic polymorph of dibenzo­tetra­thia­fulvalene

aDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
*Correspondence e-mail: yoshiro@echem.titech.ac.jp

(Received 24 July 2009; accepted 29 July 2009; online 8 August 2009)

Crystals of the title compound (DBTTF), C14H8S4, feature a triclinic polymorph different from two known monoclinic polymorphs. In this form, there are two independent centrosymmetric half-mol­ecules in the asymmetric unit. Although the mol­ecular orientations are relatively similar to one of monoclinic polymorphs, the packing motif is different.

Related literature

For the synthesis, see: Nakayama et al. (1976[Nakayama, J., Fujiwara, K. & Hoshino, M. (1976). Bull. Chem. Soc. Jpn, 49, 3567-3573.]). For the monoclinic polymorphs of DBTTF, see: Emge et al. (1982[Emge, T. J., Wiygul, F. M., Chappell, J. S., Bloch, A. N., Ferraris, J. P., Cowan, D. O. & Kistenmacher, T. J. (1982). Mol. Cryst. Liq. Cryst. 87, 137-161.]); Brillante et al. (2008[Brillante, A., Bilotti, I., Valle, R. G. D., Venuti, E., Milita, S., Dionigi, C., Borgatti, F., Lazar, A. N., Biscarini, F., Mas-Torrent, M., Oxtoby, N. S., Crivillers, N., Veciana, J., Rovira, C., Leufgen, M., Schmidt, G. & Molenkamp, L. W. (2008). CrystEngComm, 10, 1899-1909.]). For the electronic properties of DBTTF, see: Jigami et al. (1998[Jigami, T., Takimiya, K., Otsubo, T. & Aso, Y. (1998). J. Org. Chem. 63, 8865-8872.]). For the characteristics of field-effect transistors based on DBTTF, see, for example: Mas-Torrent et al. (2005[Mas-Torrent, M., Hadley, P., Bromley, S. T., Crivillers, N., Veciana, J. & Rovira, C. (2005). Appl. Phys. Lett. 86, 012110.]); Shibata et al. (2008[Shibata, K., Ishikawa, K., Takezoe, H., Wada, H. & Mori, T. (2008). Appl. Phys. Lett. 92, 023305.]). For related structures, see: Mas-Torrent et al. (2004[Mas-Torrent, M., Durkut, M., Hadley, P., Ribas, X. & Rovira, C. (2004). J. Am. Chem. Soc. 126, 984-985.]); Naraso et al. (2006[Naraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598-9599.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8S4

  • Mr = 304.46

  • Triclinic, [P \overline 1]

  • a = 8.6562 (4) Å

  • b = 9.4144 (5) Å

  • c = 9.5144 (4) Å

  • α = 74.0424 (15)°

  • β = 63.6158 (13)°

  • γ = 65.5653 (14)°

  • V = 628.43 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 93 K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.663, Tmax = 0.896

  • 6216 measured reflections

  • 2871 independent reflections

  • 2193 reflections with F2 > 2σ(F2)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.12

  • 2871 reflections

  • 164 parameters

  • All H-atom parameters refined

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

TTF and its derivatives have been well known as the most dominant electron donors (Jigami et al., 1998). Recently, some TTF derivatives have been used as organic semiconductors for organic field-effect transistors (OFETs) (Mas-Torrent et al., 2004; Naraso et al., 2006), which show high hole mobilities in both the single crystals and thin films. The title compound, dibenzotetrathiafulvalene (I), has also exhibited high mobility (Mas-Torrent et al., 2005; Shibata et al., 2008). Since the strong intermolecular interactions between the molecules are necessary for carrier transportation in organic conductors and semiconductors, the investigation of crystal structures are very important. The crystal structure of compound (I) has been reported as two monoclinic polymorphs, which are space group P21/c for α phase (Emge et al., 1982) and Cc for β phase (Brillante et al., 2008). These crystals were grown from solution and the existence of other two polymorphs has been found by means of lattice phonon confocal Raman microscopy and XRD. Herein, we report the single-crystal structure of compound (I) neither the α nor β phase.

The single-crystal of (I) which has been grown by vapour transport contains two crystallographically independent molecules with an inversion center. The molecules have chair-like structures which are slightly distorted from the molecular plane. The maximum deviations from the least-squares plane are 0.206 and 0.222 Å, and the average deviations are 0.085 and 0.111 Å. The molecular geometries in this phase are different from that in the α phase (average deviation: 0.037 Å) and similar to that in the β phase (maximum deviation: 0.235 Å, average deviation: 0.085 Å). The packing structure in this phase is a herringbone type with a tilt angle of 51.11° (Fig. 2), which is also similar to the β phase. However, the long axis is observed to be sliding and the number of intermolecular short contacts between the molecules is increased and the contact distances are shorter compared with the α and the β phase.

Related literature top

For the synthesis, see: Nakayama et al. (1976). For the monoclinic polymorphs of DBTTF, see: Emge et al. (1982); Brillante et al. (2008). For the electronic properties of DBTTF, see: Jigami et al. (1998). For the characteristics of field-effect transistors based on DBTTF, see, for example: Mas-Torrent et al. (2005); Shibata et al. (2008). For related structures, see: Mas-Torrent et al. (2004); Naraso et al. (2006).

Experimental top

To a stirred solution of 1,3-benzodithiolylium tetrafluoroborate (0.83 g, 3.5 mmol) in dichloromethane (30 ml) was added dropwise 1,8-diazabicyclo[5.4.0]undec-7-ene (1 ml) at room temperature. After being stirred for 4 h, the resulting precipitate was filtered, washed with dichloromethane and dried to give 0.30 g (58%) of the title compound. Yellow crystals of (I) suitable for X-ray analysis were obtained from slow vacuum sublimation in a gradient-temperature horizontal glass tube. A temperature of the source material was maintained at 480 K.

Refinement top

H atoms were placed in calculated positions and refined in the riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH groups.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku, 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) -x, -y, 1 - z.]
[Figure 2] Fig. 2. A packing diagram for (I) viewed along the molecular long axis.
dibenzotetrathiafulvalene top
Crystal data top
C14H8S4Z = 2
Mr = 304.46F(000) = 312.00
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 8.6562 (4) ÅCell parameters from 4982 reflections
b = 9.4144 (5) Åθ = 3.0–27.5°
c = 9.5144 (4) ŵ = 0.73 mm1
α = 74.0424 (15)°T = 93 K
β = 63.6158 (13)°Platelet, yellow
γ = 65.5653 (14)°0.35 × 0.25 × 0.15 mm
V = 628.43 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2193 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.028
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.663, Tmax = 0.896k = 1212
6216 measured reflectionsl = 1211
2871 independent reflections
Refinement top
Refinement on F2All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0363P)2 + 1.1654P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.56 e Å3
2871 reflectionsΔρmin = 0.46 e Å3
164 parameters
Crystal data top
C14H8S4γ = 65.5653 (14)°
Mr = 304.46V = 628.43 (5) Å3
Triclinic, P1Z = 2
a = 8.6562 (4) ÅMo Kα radiation
b = 9.4144 (5) ŵ = 0.73 mm1
c = 9.5144 (4) ÅT = 93 K
α = 74.0424 (15)°0.35 × 0.25 × 0.15 mm
β = 63.6158 (13)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2871 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2193 reflections with F2 > 2σ(F2)
Tmin = 0.663, Tmax = 0.896Rint = 0.028
6216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037164 parameters
wR(F2) = 0.110All H-atom parameters refined
S = 1.12Δρmax = 0.56 e Å3
2871 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S(1)0.43963 (10)0.53797 (9)0.28891 (8)0.01843 (17)
S(2)0.60882 (10)0.24998 (8)0.46970 (9)0.02064 (17)
S(3)0.07081 (10)0.20979 (9)0.46015 (9)0.01946 (17)
S(4)0.11044 (10)0.02886 (9)0.75183 (8)0.01913 (17)
C(1)0.5095 (3)0.4558 (3)0.4497 (3)0.0156 (5)
C(2)0.4701 (3)0.3575 (3)0.2425 (3)0.0172 (5)
C(3)0.5503 (3)0.2223 (3)0.3267 (3)0.0193 (5)
C(4)0.5830 (4)0.0743 (3)0.2954 (4)0.0241 (6)
C(5)0.5339 (4)0.0630 (4)0.1786 (4)0.0297 (7)
C(6)0.4545 (4)0.1975 (4)0.0947 (3)0.0291 (7)
C(7)0.4203 (4)0.3460 (4)0.1263 (3)0.0232 (6)
C(8)0.0073 (3)0.0491 (3)0.5443 (3)0.0161 (5)
C(9)0.0398 (3)0.2558 (3)0.6390 (3)0.0181 (5)
C(10)0.0446 (3)0.1709 (3)0.7768 (3)0.0173 (5)
C(11)0.0710 (4)0.1986 (3)0.9235 (3)0.0222 (6)
C(12)0.0092 (4)0.3109 (4)0.9306 (4)0.0270 (7)
C(13)0.0748 (4)0.3954 (3)0.7934 (4)0.0265 (6)
C(14)0.0984 (4)0.3703 (3)0.6477 (3)0.0211 (6)
H(1)0.63800.01760.35260.029*
H(2)0.55500.03730.15650.036*
H(3)0.42310.18830.01470.035*
H(4)0.36410.43780.06970.028*
H(5)0.13020.14201.01740.027*
H(6)0.02470.32961.02990.032*
H(7)0.11660.47130.79980.032*
H(8)0.15360.42990.55440.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S(1)0.0239 (3)0.0176 (3)0.0167 (3)0.0073 (2)0.0113 (2)0.0003 (2)
S(2)0.0255 (3)0.0145 (3)0.0260 (3)0.0040 (2)0.0158 (3)0.0021 (3)
S(3)0.0250 (3)0.0186 (3)0.0157 (3)0.0117 (3)0.0055 (2)0.0000 (2)
S(4)0.0247 (3)0.0210 (3)0.0144 (3)0.0139 (3)0.0053 (2)0.0002 (2)
C(1)0.0180 (13)0.0138 (12)0.0156 (12)0.0057 (11)0.0079 (10)0.0008 (11)
C(2)0.0152 (12)0.0240 (14)0.0145 (12)0.0101 (11)0.0017 (10)0.0065 (11)
C(3)0.0177 (13)0.0227 (14)0.0187 (13)0.0077 (11)0.0043 (11)0.0069 (12)
C(4)0.0185 (14)0.0227 (15)0.0308 (16)0.0098 (12)0.0042 (12)0.0068 (13)
C(5)0.0276 (16)0.0363 (18)0.0293 (16)0.0187 (15)0.0003 (13)0.0150 (15)
C(6)0.0311 (16)0.048 (2)0.0188 (14)0.0263 (16)0.0015 (13)0.0121 (15)
C(7)0.0245 (15)0.0366 (18)0.0138 (13)0.0180 (14)0.0046 (11)0.0031 (13)
C(8)0.0163 (12)0.0164 (13)0.0155 (12)0.0058 (11)0.0077 (10)0.0017 (11)
C(9)0.0156 (12)0.0167 (13)0.0223 (14)0.0043 (11)0.0079 (11)0.0032 (12)
C(10)0.0164 (12)0.0151 (13)0.0192 (13)0.0036 (10)0.0058 (11)0.0046 (11)
C(11)0.0209 (14)0.0243 (15)0.0194 (14)0.0075 (12)0.0046 (12)0.0049 (13)
C(12)0.0293 (16)0.0291 (17)0.0252 (16)0.0077 (14)0.0083 (13)0.0135 (14)
C(13)0.0271 (15)0.0256 (16)0.0305 (16)0.0112 (13)0.0073 (13)0.0109 (14)
C(14)0.0193 (13)0.0197 (14)0.0253 (15)0.0101 (12)0.0061 (12)0.0024 (12)
Geometric parameters (Å, º) top
S(1)—C(1)1.758 (3)C(8)—C(8)ii1.350 (5)
S(1)—C(2)1.757 (3)C(9)—C(10)1.395 (3)
S(2)—C(1)1.759 (2)C(9)—C(14)1.401 (5)
S(2)—C(3)1.759 (4)C(10)—C(11)1.391 (5)
S(3)—C(8)1.756 (3)C(11)—C(12)1.395 (6)
S(3)—C(9)1.748 (3)C(12)—C(13)1.389 (4)
S(4)—C(8)1.760 (2)C(13)—C(14)1.382 (5)
S(4)—C(10)1.759 (4)C(4)—H(1)0.950
C(1)—C(1)i1.349 (5)C(5)—H(2)0.950
C(2)—C(3)1.395 (4)C(6)—H(3)0.950
C(2)—C(7)1.396 (5)C(7)—H(4)0.950
C(3)—C(4)1.391 (5)C(11)—H(5)0.950
C(4)—C(5)1.396 (6)C(12)—H(6)0.950
C(5)—C(6)1.388 (4)C(13)—H(7)0.950
C(6)—C(7)1.393 (6)C(14)—H(8)0.950
S(1)···C(7)iii3.568 (3)H(1)···C(9)vi2.782
S(1)···C(10)iv3.578 (2)H(1)···C(10)vi2.985
S(2)···C(8)v3.359 (3)H(1)···C(11)vi3.504
S(2)···C(8)vi3.407 (2)H(1)···C(14)vi3.156
S(3)···C(6)3.574 (2)H(1)···H(1)vi2.754
C(1)···C(14)3.527 (4)H(1)···H(5)x3.260
C(4)···C(4)vi3.589 (4)H(1)···H(8)vi3.583
C(4)···C(10)vi3.545 (3)H(2)···S(2)vi3.552
C(6)···S(3)3.574 (2)H(2)···S(4)ii3.518
C(7)···S(1)iii3.568 (3)H(2)···C(6)xi3.202
C(7)···C(7)iii3.552 (5)H(2)···C(12)vi3.561
C(8)···S(2)vii3.359 (3)H(2)···H(2)xi3.329
C(8)···S(2)vi3.407 (2)H(2)···H(3)xi2.341
C(10)···S(1)iv3.578 (2)H(2)···H(5)x3.376
C(10)···C(4)vi3.545 (3)H(3)···S(1)iii3.433
C(11)···C(11)viii3.523 (4)H(3)···S(4)x3.590
C(14)···C(1)3.527 (4)H(3)···C(5)xi3.189
S(1)···H(3)iii3.433H(3)···H(2)xi2.341
S(1)···H(4)iii3.053H(3)···H(3)xi3.275
S(1)···H(7)i3.515H(3)···H(6)xiii3.486
S(1)···H(8)2.942H(4)···S(1)iii3.053
S(2)···H(1)vi3.291H(4)···C(2)iii3.154
S(2)···H(2)vi3.552H(4)···C(7)iii3.010
S(2)···H(8)3.384H(4)···C(11)iv3.309
S(3)···H(1)vi3.354H(4)···C(12)iv3.004
S(3)···H(8)iv3.135H(4)···C(13)iv3.223
S(4)···H(2)ii3.518H(4)···H(4)iii2.705
S(4)···H(3)ix3.590H(4)···H(6)iv3.215
S(4)···H(5)viii3.332H(4)···H(7)iv3.555
S(4)···H(6)viii3.480H(5)···S(4)viii3.332
C(1)···H(7)3.532H(5)···C(2)ix3.267
C(1)···H(7)i3.271H(5)···C(3)ix3.024
C(1)···H(8)2.881H(5)···C(4)ix2.848
C(1)···H(8)i3.484H(5)···C(5)ix2.925
C(2)···H(4)iii3.154H(5)···C(6)ix3.169
C(2)···H(5)x3.267H(5)···C(7)ix3.351
C(2)···H(8)3.019H(5)···C(10)viii3.252
C(3)···H(1)vi3.259H(5)···C(11)viii2.982
C(3)···H(5)x3.024H(5)···H(1)ix3.260
C(3)···H(8)3.235H(5)···H(2)ix3.376
C(4)···H(1)vi3.055H(5)···H(5)viii2.679
C(4)···H(5)x2.848H(6)···S(4)viii3.480
C(5)···H(3)xi3.189H(6)···C(13)xii3.245
C(5)···H(5)x2.925H(6)···H(3)xiv3.486
C(6)···H(2)xi3.202H(6)···H(4)iv3.215
C(6)···H(5)x3.169H(6)···H(6)xii3.273
C(7)···H(4)iii3.010H(6)···H(7)xii2.461
C(7)···H(5)x3.351H(7)···S(1)i3.515
C(9)···H(1)vi2.782H(7)···C(1)3.532
C(9)···H(8)iv3.254H(7)···C(1)i3.271
C(10)···H(1)vi2.985H(7)···C(12)xii3.293
C(10)···H(5)viii3.252H(7)···H(4)iv3.555
C(11)···H(1)vi3.504H(7)···H(6)xii2.461
C(11)···H(4)iv3.309H(7)···H(7)xii3.503
C(11)···H(5)viii2.982H(8)···S(1)2.942
C(12)···H(2)vi3.561H(8)···S(2)3.384
C(12)···H(4)iv3.004H(8)···S(3)iv3.135
C(12)···H(7)xii3.293H(8)···C(1)2.881
C(13)···H(4)iv3.223H(8)···C(1)i3.484
C(13)···H(6)xii3.245H(8)···C(2)3.019
C(14)···H(1)vi3.156H(8)···C(3)3.235
C(14)···H(8)iv3.215H(8)···C(9)iv3.254
H(1)···S(2)vi3.291H(8)···C(14)iv3.215
H(1)···S(3)vi3.354H(8)···H(1)vi3.583
H(1)···C(3)vi3.259H(8)···H(8)iv2.946
H(1)···C(4)vi3.055
C(1)—S(1)—C(2)95.02 (15)S(4)—C(10)—C(9)116.1 (2)
C(1)—S(2)—C(3)95.06 (16)S(4)—C(10)—C(11)123.3 (2)
C(8)—S(3)—C(9)95.27 (15)C(9)—C(10)—C(11)120.5 (3)
C(8)—S(4)—C(10)95.27 (16)C(10)—C(11)—C(12)119.0 (2)
S(1)—C(1)—S(2)115.5 (2)C(11)—C(12)—C(13)120.5 (3)
S(1)—C(1)—C(1)i122.5 (2)C(12)—C(13)—C(14)120.7 (4)
S(2)—C(1)—C(1)i122.0 (2)C(9)—C(14)—C(13)119.3 (2)
S(1)—C(2)—C(3)116.8 (3)C(3)—C(4)—H(1)120.5
S(1)—C(2)—C(7)122.9 (2)C(5)—C(4)—H(1)120.5
C(3)—C(2)—C(7)120.3 (3)C(4)—C(5)—H(2)119.8
S(2)—C(3)—C(2)116.6 (2)C(6)—C(5)—H(2)119.8
S(2)—C(3)—C(4)122.8 (2)C(5)—C(6)—H(3)119.6
C(2)—C(3)—C(4)120.6 (3)C(7)—C(6)—H(3)119.5
C(3)—C(4)—C(5)119.0 (3)C(2)—C(7)—H(4)120.6
C(4)—C(5)—C(6)120.3 (4)C(6)—C(7)—H(4)120.6
C(5)—C(6)—C(7)120.9 (4)C(10)—C(11)—H(5)120.5
C(2)—C(7)—C(6)118.8 (3)C(12)—C(11)—H(5)120.5
S(3)—C(8)—S(4)115.1 (2)C(11)—C(12)—H(6)119.8
S(3)—C(8)—C(8)ii122.2 (2)C(13)—C(12)—H(6)119.8
S(4)—C(8)—C(8)ii122.6 (2)C(12)—C(13)—H(7)119.6
S(3)—C(9)—C(10)117.1 (3)C(14)—C(13)—H(7)119.7
S(3)—C(9)—C(14)122.9 (2)C(9)—C(14)—H(8)120.4
C(10)—C(9)—C(14)120.0 (3)C(13)—C(14)—H(8)120.4
C(1)—S(1)—C(2)—C(3)6.4 (2)C(3)—C(2)—C(7)—C(6)0.9 (4)
C(1)—S(1)—C(2)—C(7)174.5 (2)C(7)—C(2)—C(3)—S(2)179.7 (2)
C(2)—S(1)—C(1)—S(2)10.26 (18)C(7)—C(2)—C(3)—C(4)0.5 (4)
C(2)—S(1)—C(1)—C(1)i170.5 (2)S(2)—C(3)—C(4)—C(5)179.3 (2)
C(1)—S(2)—C(3)—C(2)5.7 (2)C(2)—C(3)—C(4)—C(5)0.2 (4)
C(1)—S(2)—C(3)—C(4)175.2 (2)C(3)—C(4)—C(5)—C(6)0.3 (4)
C(3)—S(2)—C(1)—S(1)10.05 (18)C(4)—C(5)—C(6)—C(7)0.8 (4)
C(3)—S(2)—C(1)—C(1)i170.7 (2)C(5)—C(6)—C(7)—C(2)1.0 (4)
C(8)—S(3)—C(9)—C(10)5.7 (2)S(3)—C(8)—C(8)ii—S(4)ii1.6 (3)
C(8)—S(3)—C(9)—C(14)173.1 (2)S(4)—C(8)—C(8)ii—S(3)ii1.6 (3)
C(9)—S(3)—C(8)—S(4)10.05 (18)S(3)—C(9)—C(10)—S(4)0.5 (2)
C(9)—S(3)—C(8)—C(8)ii171.4 (2)S(3)—C(9)—C(10)—C(11)178.8 (2)
C(8)—S(4)—C(10)—C(9)6.4 (2)S(3)—C(9)—C(14)—C(13)177.6 (2)
C(8)—S(4)—C(10)—C(11)172.8 (2)C(10)—C(9)—C(14)—C(13)1.3 (4)
C(10)—S(4)—C(8)—S(3)10.26 (18)C(14)—C(9)—C(10)—S(4)179.4 (2)
C(10)—S(4)—C(8)—C(8)ii171.2 (2)C(14)—C(9)—C(10)—C(11)0.1 (3)
S(1)—C(1)—C(1)i—S(2)i0.8 (3)S(4)—C(10)—C(11)—C(12)178.2 (2)
S(2)—C(1)—C(1)i—S(1)i0.8 (3)C(9)—C(10)—C(11)—C(12)1.0 (4)
S(1)—C(2)—C(3)—S(2)0.5 (2)C(10)—C(11)—C(12)—C(13)1.0 (4)
S(1)—C(2)—C(3)—C(4)178.7 (2)C(11)—C(12)—C(13)—C(14)0.2 (3)
S(1)—C(2)—C(7)—C(6)178.2 (2)C(12)—C(13)—C(14)—C(9)1.3 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x1, y, z; (viii) x, y, z+2; (ix) x1, y, z+1; (x) x+1, y, z1; (xi) x+1, y, z; (xii) x, y+1, z+2; (xiii) x, y, z1; (xiv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H8S4
Mr304.46
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.6562 (4), 9.4144 (5), 9.5144 (4)
α, β, γ (°)74.0424 (15), 63.6158 (13), 65.5653 (14)
V3)628.43 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.663, 0.896
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6216, 2871, 2193
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.12
No. of reflections2871
No. of parameters164
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku, 2007).

Selected geometric parameters (Å, º) top
S(1)—C(1)1.758 (3)C(3)—C(4)1.391 (5)
S(1)—C(2)1.757 (3)C(4)—C(5)1.396 (6)
S(2)—C(1)1.759 (2)C(5)—C(6)1.388 (4)
S(2)—C(3)1.759 (4)C(6)—C(7)1.393 (6)
S(3)—C(8)1.756 (3)C(8)—C(8)ii1.350 (5)
S(3)—C(9)1.748 (3)C(9)—C(10)1.395 (3)
S(4)—C(8)1.760 (2)C(9)—C(14)1.401 (5)
S(4)—C(10)1.759 (4)C(10)—C(11)1.391 (5)
C(1)—C(1)i1.349 (5)C(11)—C(12)1.395 (6)
C(2)—C(3)1.395 (4)C(12)—C(13)1.389 (4)
C(2)—C(7)1.396 (5)C(13)—C(14)1.382 (5)
C(1)—S(1)—C(2)95.02 (15)C(5)—C(6)—C(7)120.9 (4)
C(1)—S(2)—C(3)95.06 (16)C(2)—C(7)—C(6)118.8 (3)
C(8)—S(3)—C(9)95.27 (15)S(3)—C(8)—S(4)115.1 (2)
C(8)—S(4)—C(10)95.27 (16)S(3)—C(8)—C(8)ii122.2 (2)
S(1)—C(1)—S(2)115.5 (2)S(4)—C(8)—C(8)ii122.6 (2)
S(1)—C(1)—C(1)i122.5 (2)S(3)—C(9)—C(10)117.1 (3)
S(2)—C(1)—C(1)i122.0 (2)S(3)—C(9)—C(14)122.9 (2)
S(1)—C(2)—C(3)116.8 (3)C(10)—C(9)—C(14)120.0 (3)
S(1)—C(2)—C(7)122.9 (2)S(4)—C(10)—C(9)116.1 (2)
C(3)—C(2)—C(7)120.3 (3)S(4)—C(10)—C(11)123.3 (2)
S(2)—C(3)—C(2)116.6 (2)C(9)—C(10)—C(11)120.5 (3)
S(2)—C(3)—C(4)122.8 (2)C(10)—C(11)—C(12)119.0 (2)
C(2)—C(3)—C(4)120.6 (3)C(11)—C(12)—C(13)120.5 (3)
C(3)—C(4)—C(5)119.0 (3)C(12)—C(13)—C(14)120.7 (4)
C(4)—C(5)—C(6)120.3 (4)C(9)—C(14)—C(13)119.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 19350092) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, the Mizuho Foundation for the Promotion of Sciences, the Global COE program `Education and Research Center for Emergence of New Molecular Chemistry' and the Research Fellows of the Japan Society for the Promotion of Science.

References

First citationBrillante, A., Bilotti, I., Valle, R. G. D., Venuti, E., Milita, S., Dionigi, C., Borgatti, F., Lazar, A. N., Biscarini, F., Mas-Torrent, M., Oxtoby, N. S., Crivillers, N., Veciana, J., Rovira, C., Leufgen, M., Schmidt, G. & Molenkamp, L. W. (2008). CrystEngComm, 10, 1899–1909.  Web of Science CSD CrossRef CAS Google Scholar
First citationEmge, T. J., Wiygul, F. M., Chappell, J. S., Bloch, A. N., Ferraris, J. P., Cowan, D. O. & Kistenmacher, T. J. (1982). Mol. Cryst. Liq. Cryst. 87, 137–161.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJigami, T., Takimiya, K., Otsubo, T. & Aso, Y. (1998). J. Org. Chem. 63, 8865–8872.  Web of Science CSD CrossRef CAS Google Scholar
First citationMas-Torrent, M., Durkut, M., Hadley, P., Ribas, X. & Rovira, C. (2004). J. Am. Chem. Soc. 126, 984–985.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMas-Torrent, M., Hadley, P., Bromley, S. T., Crivillers, N., Veciana, J. & Rovira, C. (2005). Appl. Phys. Lett. 86, 012110.  Web of Science CrossRef Google Scholar
First citationNakayama, J., Fujiwara, K. & Hoshino, M. (1976). Bull. Chem. Soc. Jpn, 49, 3567–3573.  CrossRef CAS Web of Science Google Scholar
First citationNaraso, Nishida, J., Kumaki, D., Tokito, S. & Yamashita, Y. (2006). J. Am. Chem. Soc. 128, 9598–9599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, K., Ishikawa, K., Takezoe, H., Wada, H. & Mori, T. (2008). Appl. Phys. Lett. 92, 023305.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds