organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis(1H-imidazol-1-ylmeth­yl)acridine monohydrate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 28 July 2009; accepted 17 August 2009; online 22 August 2009)

In the title compound, C21H17N5·H2O, the dihedral angles between the acridine ring system and the imidazole rings are 78.8 (1) and 71.2 (1)°. The crystal packing is stabilized by O—H⋯N, C—H⋯O, C—H⋯π and ππ inter­actions [centroid–centroid separations = 3.732 (1) and 3.569 (1) Å].

Related literature

For the biological activity of acridines, see: Talacki et al. (1974[Talacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044-1047.]); Achenson (1956[Achenson, R. M. (1956). In Acridines: The Chemistry of Heterocyclic Compounds, Vol. 9, edited by A. Weissberger, pp. 339-361. New York: Interscience.]); Prasad Krishna et al. (1984[Prasad Krishna, B. N., Banasal, I., Das, P. & Srivastava, R. (1984). Curr. Sci. 53, 778-780.]); Asthana et al. (1991[Asthana, P., Rastogi, S., Ghose, S. & Das, S. R. (1991). Indian J. Chem. Sect. B, 30, 893-900.]). For their anti­protozoal activity, see: Karolak-Wojciechowska et al. (1996[Karolak-Wojciechowska, J., Mrozek, A., Amiel, P., Brouant, P. & Barbe, J. (1996). Acta Cryst. C52, 2939-2941.]). For the ability of acridine to inter­calate between the base-pairs of DNA, see: Neidle (1979[Neidle, S. (1979). Prog. Med. Chem. 16, 151-221.]); Fan et al. (1997[Fan, J.-Y., Tercel, M. & Denny, W. A. (1997). Anti-Cancer Drug Des. 12, 277-293.]). For acridine compounds in the treatment of Alzheimer's disease, see: Bandoli et al. (1994[Bandoli, G., Dolmella, A., Gatto, S. & Nicolini, M. (1994). J. Chem. Crystallogr. 24, 301-310.]). For their toxicity, see: Di Giorgio et al. (2005[Di Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumenil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560-5568.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N5·H2O

  • Mr = 357.41

  • Monoclinic, P 21 /n

  • a = 14.3359 (6) Å

  • b = 6.9132 (3) Å

  • c = 17.7458 (8) Å

  • β = 92.895 (3)°

  • V = 1756.49 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.984

  • 19520 measured reflections

  • 4286 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.145

  • S = 1.06

  • 4286 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯O1i 0.97 2.55 3.482 (3) 162
O1—H1A⋯N3 0.90 (3) 2.07 (3) 2.945 (3) 166 (3)
O1—H1B⋯N5ii 0.85 (3) 2.21 (3) 3.030 (3) 162 (3)
C7—H7⋯Cg1iii 0.93 2.69 3.577 (2) 159
C20—H20⋯Cg1iv 0.93 2.90 3.648 (2) 139
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the N4/N5/C19–C21 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridines are found to have a wide range of biological activities, such as mutagenic, antitumour (Talacki et al., 1974), antibacterial (Achenson, 1956), antiamoebic (Prasad Krishna et al., 1984), hypersensitive, antiinflammatory and antiimplantation (Asthana et al., 1991) activities. A drug containing the acridine moiety has been found to possess antiprotozoal activity (Karolak-Wojciechowska et al., 1996). The ability of acridine to intercalate between the base-pairs of DNA is also well known (Neidle, 1979; Fan et al., 1997). Acridine compounds are considered to be efficient drugs for the treatment of Alzheimer's disease (Bandoli et al., 1994). Acridine derivatives have been shown to exert toxicity towards Plasmodium, Trypanosoma, and Leishmania parasites (Di Giorgio et al., 2005). The imidazole group have found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry and materials science. Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound has been carried out.

The two imidazole groups are almost parallel to each other, the dihedral angle between the mean planes being 39.5 (1)°; these planes are inclined at 78.9 (1)° and 71.2 (9)° with respect to the mean plane of the acridine system. The pseudo-torsion angle N2–C14···.C18–N4 [-145.8 (2)°], resulting in both imidazole group being approximately bisected by the plane of the acridine system. The acridine ring system and imidazole rings are essentially planar, with maximum deviations of 0.062 (3), 0.006 (2) and 0.001 (2) Å, for atoms C4, N3 and C19, respectively.

The crystal packing is stabilized by C–H···O, C–H···N, C–H···π (Table. 1) and ππ interactions with a Cg2···Cg2ii and a Cg4···Cg3iv separation of 3.732 (1)Å and 3.569 (1) Å, respectively (Fig.2; Cg2, Cg3 and Cg4 are the centroids of the N2/N3/C15–C17 imidazole ring, N1/C1/C6/C7/C8/C13 pyridine ring and C8–C13 benzene ring, respectively, symmetry code as in Fig. 2).

Related literature top

For the biological activity of acridines, see: Talacki et al. (1974); Achenson (1956); Prasad Krishna et al. (1984); Asthana et al. (1991). For their antiprotozoal activity, see: Karolak-Wojciechowska et al. (1996). For the ability of acridine to intercalate between the base-pairs of DNA, see: Neidle (1979); Fan et al. (1997). For acridine compounds in the treatment of Alzheimer's disease, see: Bandoli et al. (1994). For their toxicity, see: Di Giorgio et al. (2005). Cg1 is the centroid of the N4/N5/C19–C21 ring.

Experimental top

To a solution of imidazole, in the presence of acetonitrile (50 ml) and NaOH solution (7.5 ml) was added and stirred for 10 minutes, then 4,5-bis(bromomethyl) acridine in the presence of acetonitrile(20 ml) was added at once and stirred at room temperature for 48hrs. After completion of reaction, the solvent was evaporated in vaccum and the residue was extracted with CHCl3(300 ml). Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement top

H atoms of water were located is a difference fourier map, and were refined with distance restraints of O–H= 0.85 (3)Å. All other H atoms were fixed geometrically and allowed to ride on their parent atoms, with C–H = 0.93–0.98Å and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. C–H···O, O–H···N, C–H···π and ππ interactions (dotted lines) in the title compound. Cg denotes ring centroid. [Symmetry code: (i) -1/2 - x, 1/2 + y, 1/2 - z; (ii) -x, 1 - y, -z; (iii) 1 - x, 2 - y, -z; (iv) 1 - x, 1 - y, -z; (v) 1/2 - x, 2 - y, -z]
4,5-Bis(1H-imidazol-1-ylmethyl)acridine monohydrate top
Crystal data top
C21H17N5·H2OF(000) = 752
Mr = 357.41Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4286 reflections
a = 14.3359 (6) Åθ = 1.8–28.1°
b = 6.9132 (3) ŵ = 0.09 mm1
c = 17.7458 (8) ÅT = 293 K
β = 92.895 (3)°Block, white crystalline
V = 1756.49 (13) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4286 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 28.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.978, Tmax = 0.984k = 98
19520 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.3961P]
where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H17N5·H2OV = 1756.49 (13) Å3
Mr = 357.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.3359 (6) ŵ = 0.09 mm1
b = 6.9132 (3) ÅT = 293 K
c = 17.7458 (8) Å0.25 × 0.22 × 0.19 mm
β = 92.895 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4286 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2652 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.036
19520 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.19 e Å3
4286 reflectionsΔρmin = 0.20 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31970 (12)0.7854 (2)0.06027 (9)0.0394 (4)
C20.22370 (12)0.8010 (3)0.08514 (10)0.0463 (4)
C30.20069 (15)0.8387 (3)0.15855 (12)0.0618 (5)
H30.13820.85580.17370.074*
C40.26910 (17)0.8528 (4)0.21250 (12)0.0715 (6)
H40.25130.87930.26260.086*
C50.35988 (16)0.8283 (3)0.19224 (11)0.0609 (5)
H50.40410.83240.22880.073*
C60.38899 (13)0.7960 (3)0.11539 (10)0.0446 (4)
C70.48111 (13)0.7751 (3)0.09095 (10)0.0466 (4)
H70.52740.77790.12580.056*
C80.50554 (12)0.7500 (2)0.01541 (10)0.0414 (4)
C90.59945 (12)0.7289 (3)0.01289 (12)0.0509 (5)
H90.64760.73130.02030.061*
C100.61933 (13)0.7056 (3)0.08691 (12)0.0570 (5)
H100.68110.69120.10480.068*
C110.54661 (13)0.7027 (3)0.13806 (11)0.0522 (5)
H110.56170.68570.18920.063*
C120.45576 (12)0.7241 (2)0.11476 (10)0.0412 (4)
C130.43189 (11)0.7464 (2)0.03633 (9)0.0374 (4)
C140.14924 (12)0.7687 (3)0.03008 (11)0.0490 (4)
H14A0.16710.83180.01730.059*
H14B0.09120.82610.04960.059*
C150.10166 (15)0.4321 (3)0.06850 (13)0.0663 (6)
H150.08650.45540.11930.080*
C160.09479 (17)0.2638 (3)0.03245 (16)0.0750 (7)
H160.07270.14960.05450.090*
C180.38042 (13)0.7272 (3)0.17082 (10)0.0465 (4)
H18A0.32350.67370.14740.056*
H18B0.39920.64590.21350.056*
C190.30224 (12)1.0562 (3)0.16560 (11)0.0497 (5)
H190.26431.04150.12190.060*
C200.30963 (14)1.2133 (3)0.20991 (12)0.0584 (5)
H200.27651.32750.20130.070*
C210.40165 (14)1.0055 (3)0.25943 (10)0.0554 (5)
H210.44540.94430.29170.067*
N10.34184 (9)0.76245 (19)0.01343 (8)0.0385 (3)
N20.13497 (9)0.5626 (2)0.01681 (8)0.0446 (4)
N30.12452 (15)0.2830 (3)0.04082 (14)0.0815 (6)
N40.36165 (9)0.9226 (2)0.19781 (8)0.0427 (4)
N50.37208 (13)1.1834 (3)0.26923 (10)0.0658 (5)
O10.04120 (12)0.0382 (3)0.15544 (11)0.0766 (5)
C170.14712 (15)0.4659 (4)0.04758 (12)0.0668 (6)
H170.16930.52210.09260.080*
H1A0.074 (2)0.096 (5)0.120 (2)0.138 (14)*
H1B0.066 (2)0.070 (4)0.1662 (16)0.099 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0481 (9)0.0282 (9)0.0424 (9)0.0013 (7)0.0082 (7)0.0005 (7)
C20.0493 (10)0.0365 (10)0.0527 (11)0.0003 (7)0.0009 (8)0.0019 (8)
C30.0616 (12)0.0634 (14)0.0593 (12)0.0044 (10)0.0090 (10)0.0072 (10)
C40.0830 (16)0.0837 (18)0.0469 (12)0.0154 (13)0.0069 (11)0.0117 (11)
C50.0765 (14)0.0628 (14)0.0444 (11)0.0136 (11)0.0120 (10)0.0034 (9)
C60.0534 (10)0.0353 (10)0.0459 (10)0.0060 (7)0.0119 (8)0.0001 (7)
C70.0533 (10)0.0383 (10)0.0501 (10)0.0047 (8)0.0206 (8)0.0025 (8)
C80.0435 (9)0.0277 (9)0.0539 (10)0.0006 (7)0.0115 (7)0.0023 (7)
C90.0434 (9)0.0424 (11)0.0681 (13)0.0009 (8)0.0150 (8)0.0049 (9)
C100.0434 (10)0.0515 (13)0.0756 (14)0.0053 (8)0.0005 (9)0.0052 (10)
C110.0560 (11)0.0450 (12)0.0548 (11)0.0033 (8)0.0039 (9)0.0028 (9)
C120.0468 (9)0.0302 (9)0.0469 (10)0.0003 (7)0.0044 (7)0.0014 (7)
C130.0419 (9)0.0255 (8)0.0456 (9)0.0006 (6)0.0082 (7)0.0013 (7)
C140.0443 (9)0.0406 (11)0.0623 (12)0.0026 (8)0.0027 (8)0.0001 (9)
C150.0788 (14)0.0549 (14)0.0635 (13)0.0027 (11)0.0115 (11)0.0049 (11)
C160.0743 (15)0.0424 (13)0.108 (2)0.0039 (10)0.0035 (14)0.0016 (13)
C180.0569 (10)0.0406 (11)0.0423 (9)0.0052 (8)0.0057 (8)0.0042 (8)
C190.0440 (9)0.0541 (12)0.0519 (10)0.0030 (8)0.0122 (8)0.0075 (9)
C200.0586 (12)0.0549 (13)0.0642 (13)0.0068 (9)0.0276 (10)0.0016 (10)
C210.0568 (11)0.0655 (14)0.0445 (10)0.0020 (10)0.0071 (8)0.0060 (9)
N10.0420 (7)0.0303 (8)0.0440 (8)0.0003 (5)0.0090 (6)0.0001 (6)
N20.0398 (7)0.0426 (9)0.0516 (9)0.0010 (6)0.0040 (6)0.0018 (7)
N30.0780 (13)0.0672 (15)0.0993 (17)0.0087 (10)0.0051 (12)0.0298 (12)
N40.0448 (8)0.0454 (9)0.0388 (7)0.0028 (6)0.0111 (6)0.0010 (6)
N50.0769 (12)0.0624 (13)0.0598 (11)0.0014 (9)0.0203 (9)0.0158 (9)
O10.0682 (10)0.0828 (14)0.0784 (12)0.0017 (10)0.0003 (9)0.0099 (10)
C170.0725 (14)0.0716 (17)0.0562 (12)0.0135 (12)0.0012 (10)0.0141 (11)
Geometric parameters (Å, º) top
C1—N11.340 (2)C14—N21.460 (2)
C1—C21.428 (2)C14—H14A0.9700
C1—C61.431 (2)C14—H14B0.9700
C2—C31.353 (3)C15—C161.334 (3)
C2—C141.500 (2)C15—N21.356 (3)
C3—C41.408 (3)C15—H150.9300
C3—H30.9300C16—N31.354 (3)
C4—C51.343 (3)C16—H160.9300
C4—H40.9300C18—N41.462 (2)
C5—C61.423 (3)C18—H18A0.9700
C5—H50.9300C18—H18B0.9700
C6—C71.377 (3)C19—C201.342 (3)
C7—C81.379 (3)C19—N41.362 (2)
C7—H70.9300C19—H190.9300
C8—C91.421 (3)C20—N51.363 (3)
C8—C131.434 (2)C20—H200.9300
C9—C101.340 (3)C21—N51.315 (3)
C9—H90.9300C21—N41.338 (2)
C10—C111.416 (3)C21—H210.9300
C10—H100.9300N2—C171.327 (2)
C11—C121.355 (2)N3—C171.310 (3)
C11—H110.9300O1—H1A0.91 (4)
C12—C131.425 (2)O1—H1B0.85 (3)
C12—C181.505 (2)C17—H170.9300
C13—N11.338 (2)
N1—C1—C2119.20 (15)N2—C14—H14A109.4
N1—C1—C6122.36 (15)C2—C14—H14A109.4
C2—C1—C6118.44 (16)N2—C14—H14B109.4
C3—C2—C1119.77 (17)C2—C14—H14B109.4
C3—C2—C14120.60 (17)H14A—C14—H14B108.0
C1—C2—C14119.60 (16)C16—C15—N2106.7 (2)
C2—C3—C4121.58 (19)C16—C15—H15126.6
C2—C3—H3119.2N2—C15—H15126.6
C4—C3—H3119.2C15—C16—N3110.4 (2)
C5—C4—C3120.52 (19)C15—C16—H16124.8
C5—C4—H4119.7N3—C16—H16124.8
C3—C4—H4119.7N4—C18—C12112.31 (14)
C4—C5—C6120.63 (19)N4—C18—H18A109.1
C4—C5—H5119.7C12—C18—H18A109.1
C6—C5—H5119.7N4—C18—H18B109.1
C7—C6—C5123.26 (17)C12—C18—H18B109.1
C7—C6—C1117.86 (16)H18A—C18—H18B107.9
C5—C6—C1118.88 (17)C20—C19—N4105.90 (18)
C6—C7—C8120.78 (15)C20—C19—H19127.1
C6—C7—H7119.6N4—C19—H19127.1
C8—C7—H7119.6C19—C20—N5111.03 (19)
C7—C8—C9123.10 (16)C19—C20—H20124.5
C7—C8—C13117.74 (15)N5—C20—H20124.5
C9—C8—C13119.16 (16)N5—C21—N4112.40 (19)
C10—C9—C8120.65 (17)N5—C21—H21123.8
C10—C9—H9119.7N4—C21—H21123.8
C8—C9—H9119.7C13—N1—C1118.91 (14)
C9—C10—C11120.20 (18)C17—N2—C15105.89 (18)
C9—C10—H10119.9C17—N2—C14128.06 (17)
C11—C10—H10119.9C15—N2—C14125.97 (17)
C12—C11—C10122.02 (18)C17—N3—C16104.28 (19)
C12—C11—H11119.0C21—N4—C19106.58 (17)
C10—C11—H11119.0C21—N4—C18125.81 (16)
C11—C12—C13119.33 (16)C19—N4—C18127.60 (15)
C11—C12—C18120.72 (16)C21—N5—C20104.10 (17)
C13—C12—C18119.95 (15)H1A—O1—H1B109 (3)
N1—C13—C12119.07 (14)N3—C17—N2112.7 (2)
N1—C13—C8122.30 (15)N3—C17—H17123.6
C12—C13—C8118.62 (15)N2—C17—H17123.6
N2—C14—C2111.13 (14)
N1—C1—C2—C3175.05 (17)C9—C8—C13—N1178.93 (15)
C6—C1—C2—C34.7 (3)C7—C8—C13—C12178.90 (15)
N1—C1—C2—C147.0 (2)C9—C8—C13—C120.8 (2)
C6—C1—C2—C14173.28 (16)C3—C2—C14—N299.4 (2)
C1—C2—C3—C43.6 (3)C1—C2—C14—N278.6 (2)
C14—C2—C3—C4174.4 (2)N2—C15—C16—N31.1 (3)
C2—C3—C4—C50.2 (4)C11—C12—C18—N489.8 (2)
C3—C4—C5—C62.8 (4)C13—C12—C18—N489.38 (19)
C4—C5—C6—C7178.2 (2)N4—C19—C20—N50.1 (2)
C4—C5—C6—C11.5 (3)C12—C13—N1—C1179.31 (14)
N1—C1—C6—C72.2 (2)C8—C13—N1—C11.0 (2)
C2—C1—C6—C7178.12 (16)C2—C1—N1—C13179.48 (15)
N1—C1—C6—C5177.52 (17)C6—C1—N1—C130.8 (2)
C2—C1—C6—C52.2 (2)C16—C15—N2—C170.5 (2)
C5—C6—C7—C8177.98 (18)C16—C15—N2—C14176.70 (17)
C1—C6—C7—C81.7 (3)C2—C14—N2—C17118.2 (2)
C6—C7—C8—C9179.63 (16)C2—C14—N2—C1565.3 (2)
C6—C7—C8—C130.0 (2)C15—C16—N3—C171.3 (3)
C7—C8—C9—C10179.76 (18)N5—C21—N4—C190.1 (2)
C13—C8—C9—C100.1 (3)N5—C21—N4—C18179.16 (15)
C8—C9—C10—C110.3 (3)C20—C19—N4—C210.08 (19)
C9—C10—C11—C120.4 (3)C20—C19—N4—C18179.16 (15)
C10—C11—C12—C131.3 (3)C12—C18—N4—C2192.4 (2)
C10—C11—C12—C18177.90 (18)C12—C18—N4—C1986.5 (2)
C11—C12—C13—N1178.27 (15)N4—C21—N5—C200.0 (2)
C18—C12—C13—N12.6 (2)C19—C20—N5—C210.0 (2)
C11—C12—C13—C81.4 (2)C16—N3—C17—N21.0 (3)
C18—C12—C13—C8177.73 (15)C15—N2—C17—N30.4 (3)
C7—C8—C13—N11.4 (2)C14—N2—C17—N3177.43 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.972.553.482 (3)162
O1—H1A···N30.90 (3)2.07 (3)2.945 (3)166 (3)
O1—H1B···N5ii0.85 (3)2.21 (3)3.030 (3)162 (3)
C7—H7···Cg1iii0.932.693.577 (2)159
C20—H20···Cg1i0.932.903.648 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y3/2, z+1/2; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC21H17N5·H2O
Mr357.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.3359 (6), 6.9132 (3), 17.7458 (8)
β (°) 92.895 (3)
V3)1756.49 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19520, 4286, 2652
Rint0.036
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.145, 1.06
No. of reflections4286
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O1i0.972.553.482 (3)161.6
O1—H1A···N30.90 (3)2.07 (3)2.945 (3)166 (3)
O1—H1B···N5ii0.85 (3)2.21 (3)3.030 (3)162 (3)
C7—H7···Cg1iii0.932.693.577 (2)159
C20—H20···Cg1i0.932.903.648 (2)139
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y3/2, z+1/2; (iii) x+1, y+2, z.
 

Acknowledgements

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

References

First citationAchenson, R. M. (1956). In Acridines: The Chemistry of Heterocyclic Compounds, Vol. 9, edited by A. Weissberger, pp. 339–361. New York: Interscience.  Google Scholar
First citationAsthana, P., Rastogi, S., Ghose, S. & Das, S. R. (1991). Indian J. Chem. Sect. B, 30, 893–900.  Google Scholar
First citationBandoli, G., Dolmella, A., Gatto, S. & Nicolini, M. (1994). J. Chem. Crystallogr. 24, 301–310.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Giorgio, C., De Meo, M., Chiron, J., Delmas, F., Nikoyan, A., Severine, J., Dumenil, G., Timon-David, P. & Galy, J.-P. (2005). Bioorg. Med. Chem. 13, 5560–5568.  Web of Science PubMed CAS Google Scholar
First citationFan, J.-Y., Tercel, M. & Denny, W. A. (1997). Anti-Cancer Drug Des. 12, 277–293.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKarolak-Wojciechowska, J., Mrozek, A., Amiel, P., Brouant, P. & Barbe, J. (1996). Acta Cryst. C52, 2939–2941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNeidle, S. (1979). Prog. Med. Chem. 16, 151–221.  CrossRef CAS PubMed Google Scholar
First citationPrasad Krishna, B. N., Banasal, I., Das, P. & Srivastava, R. (1984). Curr. Sci. 53, 778–780.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTalacki, R., Carrell, H. L. & Glusker, J. P. (1974). Acta Cryst. B30, 1044–1047.  CSD CrossRef IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds