organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-(2-nitro­benzyl­­idene)malonate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 28 July 2009; accepted 17 August 2009; online 22 August 2009)

In the title compound, C14H15NO6, the ethoxy­carbonyl groups adopt extended conformations. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of C—H⋯O hydrogen bonds with a R22(20) motif.

Related literature

For biological activity of nitro­gen-containing building blocks derived from α-methyl­ene-β-hydr­oxy esters, see: Singh & Batra (2008[Singh, V. & Batra, S. (2008). Tetrahedron, 64, 4511-4574.]); Masson et al. (2007[Masson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed. 46, 4614-4628.]); Basavaiah et al. (2003[Basavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811-891.]); Youngme et al. (2007[Youngme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843-848.]); Ma et al. (2005[Ma, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett. 59, 3678-3681.]); Soldatov et al. (2003[Soldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826-3840.]); Hinckley (1969[Hinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160-5162.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO6

  • Mr = 293.27

  • Triclinic, [P \overline 1]

  • a = 7.8410 (2) Å

  • b = 8.5571 (2) Å

  • c = 12.3533 (4) Å

  • α = 80.866 (2)°

  • β = 75.037 (1)°

  • γ = 64.402 (1)°

  • V = 721.10 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.978, Tmax = 0.982

  • 19570 measured reflections

  • 4226 independent reflections

  • 3259 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.145

  • S = 1.06

  • 4226 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.47 3.1683 (18) 132
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrogen-containing building blocks derived from a-methylene-β-hydroxy esters (Morita-Baylis-Hillman adducts) have been widely employed in modern organic chemistry for the synthesis of natural products and heterocycles of biological relevance (Singh & Batra, 2008; Masson et al., 2007; Basavaiah et al., 2003). β-Diketone as an excellent chelating group has been widely used in supramolecular chemistry. It can form a variety of complexes with various transition-metals (e.g. Cu, Co, Ni, Mn, Pd) or rare-earth metals (e.g. Eu, Sm, La, Gd) (Youngme et al., 2007; Ma et al., 2005). These metal complexes have significant applications in material science or act as chemical shift reagents (Soldatov et al., 2003; Hinckley, 1969). In view of this importance, the crystal structure determination of the title compound (Fig.1) has been carried out.

A perspective view of the title compound with the atom-numbering scheme is shown in Fig. 1. The deviations of the atoms N, O1 and O2 from the least-squares plane of the phenyl rings are -0.080 (1), 0.296 (2) and -0.527 (1) Å. The ethoxycarbonyl groups adopt extended conformation as can be seen from the torsion angles C8- C9- O6- C10 [175.6 (1)°], C9- O6- C10- C11 [-79.9 (2)°], C8- C12- O5- C13[178.6 (1)°] and C12- O5- C13- C14 [178.5 (1)°]. The C2–H2···O3 hydrogen bonds form a cyclic centrosymmetric dimer [R22(20)] shown in Fig.2.

Related literature top

For biological activity of nitrogen-containing building blocks derived from α-methylene-β-hydroxy esters, see: Singh & Batra (2008); Masson et al. (2007); Basavaiah et al. (2003); Youngme et al. (2007); Ma et al. (2005); Soldatov et al. (2003); Hinckley (1969).

Experimental top

A mixture of 2-nitrobenzaldehyde (5 g, 33.11 mmol) in dry xylene (50 ml), ethylene diamine di acetate (1.2 g, 6.66 mmol) and diethyl malonate (6.36 g, 39.7 mmol) were added. The reaction was then refluxed for 12 h, it was then poured over ice - water (100 ml), extracted with CHCl3 (60 ml) and dried (Na2 SO4). The removal of solvent followed by recrystallization from methanol. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in methanol.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C–H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom labeling scheme. The displacement ellipsoids are drawn at the 30% probability level while the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal structure showing the centrosymmetric hydrogen bond motif R22(20). For the sake of clarity, the H atoms not involved in the motif have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, -z). The dashed lines indicate the hydrogen bonds.
Diethyl 2-(2-nitrobenzylidene)malonate top
Crystal data top
C14H15NO6Z = 2
Mr = 293.27F(000) = 308
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8410 (2) ÅCell parameters from 4226 reflections
b = 8.5571 (2) Åθ = 1.7–30.7°
c = 12.3533 (4) ŵ = 0.11 mm1
α = 80.866 (2)°T = 293 K
β = 75.037 (1)°Block, colourless
γ = 64.402 (1)°0.21 × 0.19 × 0.17 mm
V = 721.10 (3) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4226 independent reflections
Radiation source: fine-focus sealed tube3259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.978, Tmax = 0.982k = 1112
19570 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1321P]
where P = (Fo2 + 2Fc2)/3
4226 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H15NO6γ = 64.402 (1)°
Mr = 293.27V = 721.10 (3) Å3
Triclinic, P1Z = 2
a = 7.8410 (2) ÅMo Kα radiation
b = 8.5571 (2) ŵ = 0.11 mm1
c = 12.3533 (4) ÅT = 293 K
α = 80.866 (2)°0.21 × 0.19 × 0.17 mm
β = 75.037 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4226 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3259 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.982Rint = 0.025
19570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
4226 reflectionsΔρmin = 0.28 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32734 (17)0.26054 (16)0.00483 (10)0.0324 (3)
C20.4208 (2)0.18112 (18)0.09512 (11)0.0393 (3)
H20.35300.15630.13670.047*
C30.6156 (2)0.1390 (2)0.13275 (12)0.0445 (3)
H30.68080.08540.20020.053*
C40.7138 (2)0.1765 (2)0.07003 (12)0.0444 (3)
H40.84580.14690.09510.053*
C50.61807 (19)0.25790 (18)0.02979 (11)0.0380 (3)
H50.68670.28340.07040.046*
C60.42104 (17)0.30233 (16)0.07069 (10)0.0307 (2)
C70.32275 (18)0.40052 (17)0.17243 (11)0.0335 (3)
H70.20960.49960.16940.040*
C80.38277 (18)0.35895 (16)0.26840 (10)0.0322 (3)
C90.54181 (19)0.18778 (16)0.28991 (10)0.0339 (3)
C100.8427 (2)0.0493 (2)0.34618 (14)0.0517 (4)
H10A0.95760.07090.33600.062*
H10B0.87250.04130.29720.062*
C110.7894 (3)0.0099 (2)0.46438 (15)0.0570 (4)
H11A0.75330.08180.51260.086*
H11B0.89800.10920.48400.086*
H11C0.68240.04080.47300.086*
C120.27995 (18)0.48151 (17)0.36030 (11)0.0350 (3)
C130.2334 (2)0.51216 (19)0.55376 (11)0.0432 (3)
H13A0.09350.56180.56460.052*
H13B0.27520.60610.54190.052*
C140.2947 (3)0.4002 (2)0.65347 (13)0.0581 (4)
H14A0.24400.31310.66780.087*
H14B0.24620.46970.71740.087*
H14C0.43340.34520.63970.087*
N0.12284 (17)0.29396 (16)0.04462 (12)0.0446 (3)
O10.03150 (19)0.3042 (2)0.02475 (13)0.0753 (4)
O20.05294 (17)0.30788 (19)0.14427 (11)0.0651 (4)
O30.53708 (18)0.05173 (13)0.28408 (10)0.0536 (3)
O40.17045 (18)0.63004 (14)0.34780 (9)0.0564 (3)
O50.32173 (14)0.40462 (12)0.45770 (8)0.0394 (2)
O60.68593 (13)0.20702 (12)0.31542 (9)0.0417 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0360 (6)0.0334 (6)0.0324 (6)0.0158 (5)0.0140 (5)0.0017 (5)
C20.0546 (8)0.0390 (7)0.0318 (6)0.0213 (6)0.0185 (6)0.0007 (5)
C30.0560 (8)0.0465 (8)0.0301 (7)0.0220 (7)0.0034 (6)0.0068 (6)
C40.0409 (7)0.0516 (8)0.0402 (7)0.0221 (6)0.0000 (6)0.0065 (6)
C50.0384 (6)0.0467 (7)0.0357 (7)0.0220 (6)0.0098 (5)0.0037 (6)
C60.0364 (6)0.0320 (6)0.0264 (6)0.0150 (5)0.0105 (4)0.0001 (4)
C70.0345 (6)0.0339 (6)0.0331 (6)0.0130 (5)0.0095 (5)0.0037 (5)
C80.0374 (6)0.0303 (6)0.0299 (6)0.0130 (5)0.0083 (5)0.0052 (5)
C90.0445 (6)0.0313 (6)0.0249 (6)0.0119 (5)0.0099 (5)0.0057 (4)
C100.0354 (7)0.0476 (8)0.0584 (10)0.0017 (6)0.0121 (6)0.0072 (7)
C110.0533 (9)0.0496 (9)0.0595 (10)0.0091 (7)0.0232 (7)0.0035 (8)
C120.0382 (6)0.0330 (6)0.0333 (6)0.0120 (5)0.0089 (5)0.0059 (5)
C130.0523 (8)0.0386 (7)0.0336 (7)0.0118 (6)0.0064 (6)0.0129 (6)
C140.0844 (12)0.0509 (9)0.0335 (8)0.0210 (8)0.0129 (8)0.0067 (7)
N0.0378 (6)0.0457 (7)0.0561 (8)0.0183 (5)0.0164 (5)0.0047 (6)
O10.0558 (7)0.1031 (11)0.0868 (10)0.0357 (7)0.0377 (7)0.0131 (8)
O20.0455 (6)0.0896 (10)0.0628 (8)0.0328 (6)0.0022 (5)0.0185 (7)
O30.0800 (8)0.0325 (5)0.0580 (7)0.0194 (5)0.0361 (6)0.0042 (5)
O40.0665 (7)0.0376 (6)0.0441 (6)0.0029 (5)0.0168 (5)0.0086 (5)
O50.0511 (5)0.0328 (5)0.0292 (5)0.0096 (4)0.0096 (4)0.0086 (4)
O60.0364 (5)0.0370 (5)0.0497 (6)0.0103 (4)0.0137 (4)0.0033 (4)
Geometric parameters (Å, º) top
C1—C21.3756 (19)C10—O61.4566 (17)
C1—C61.3991 (16)C10—C111.482 (2)
C1—N1.4615 (17)C10—H10A0.9700
C2—C31.375 (2)C10—H10B0.9700
C2—H20.9300C11—H11A0.9600
C3—C41.377 (2)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.383 (2)C12—O41.1998 (16)
C4—H40.9300C12—O51.3244 (16)
C5—C61.3917 (17)C13—O51.4512 (16)
C5—H50.9300C13—C141.483 (2)
C6—C71.4680 (17)C13—H13A0.9700
C7—C81.3278 (17)C13—H13B0.9700
C7—H70.9300C14—H14A0.9600
C8—C121.4878 (17)C14—H14B0.9600
C8—C91.4967 (17)C14—H14C0.9600
C9—O31.1947 (16)N—O21.2132 (18)
C9—O61.3283 (16)N—O11.2222 (17)
C2—C1—C6123.07 (12)O6—C10—H10B109.4
C2—C1—N117.21 (11)C11—C10—H10B109.4
C6—C1—N119.66 (12)H10A—C10—H10B108.0
C3—C2—C1119.15 (12)C10—C11—H11A109.5
C3—C2—H2120.4C10—C11—H11B109.5
C1—C2—H2120.4H11A—C11—H11B109.5
C4—C3—C2119.66 (13)C10—C11—H11C109.5
C4—C3—H3120.2H11A—C11—H11C109.5
C2—C3—H3120.2H11B—C11—H11C109.5
C3—C4—C5120.72 (13)O4—C12—O5124.51 (12)
C3—C4—H4119.6O4—C12—C8124.15 (12)
C5—C4—H4119.6O5—C12—C8111.33 (10)
C4—C5—C6121.29 (12)O5—C13—C14107.61 (12)
C4—C5—H5119.4O5—C13—H13A110.2
C6—C5—H5119.4C14—C13—H13A110.2
C5—C6—C1116.11 (11)O5—C13—H13B110.2
C5—C6—C7119.28 (11)C14—C13—H13B110.2
C1—C6—C7124.41 (11)H13A—C13—H13B108.5
C8—C7—C6125.13 (11)C13—C14—H14A109.5
C8—C7—H7117.4C13—C14—H14B109.5
C6—C7—H7117.4H14A—C14—H14B109.5
C7—C8—C12118.91 (11)C13—C14—H14C109.5
C7—C8—C9122.12 (11)H14A—C14—H14C109.5
C12—C8—C9118.84 (10)H14B—C14—H14C109.5
O3—C9—O6125.05 (12)O2—N—O1123.34 (13)
O3—C9—C8123.16 (12)O2—N—C1118.78 (11)
O6—C9—C8111.79 (11)O1—N—C1117.87 (13)
O6—C10—C11111.16 (12)C12—O5—C13116.56 (10)
O6—C10—H10A109.4C9—O6—C10116.65 (11)
C11—C10—H10A109.4
C6—C1—C2—C30.5 (2)C7—C8—C9—O6123.02 (13)
N—C1—C2—C3176.61 (12)C12—C8—C9—O661.15 (15)
C1—C2—C3—C40.1 (2)C7—C8—C12—O415.0 (2)
C2—C3—C4—C50.7 (2)C9—C8—C12—O4169.01 (14)
C3—C4—C5—C60.8 (2)C7—C8—C12—O5163.66 (12)
C4—C5—C6—C10.28 (19)C9—C8—C12—O512.30 (16)
C4—C5—C6—C7175.29 (12)C2—C1—N—O2155.65 (14)
C2—C1—C6—C50.36 (19)C6—C1—N—O221.53 (19)
N—C1—C6—C5176.64 (11)C2—C1—N—O123.42 (19)
C2—C1—C6—C7174.37 (12)C6—C1—N—O1159.40 (14)
N—C1—C6—C78.63 (18)O4—C12—O5—C132.7 (2)
C5—C6—C7—C850.59 (19)C8—C12—O5—C13178.64 (11)
C1—C6—C7—C8134.84 (14)C14—C13—O5—C12178.49 (13)
C6—C7—C8—C12173.32 (11)O3—C9—O6—C104.6 (2)
C6—C7—C8—C910.8 (2)C8—C9—O6—C10175.61 (11)
C7—C8—C9—O356.78 (19)C11—C10—O6—C979.96 (17)
C12—C8—C9—O3119.05 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.473.1683 (18)132
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H15NO6
Mr293.27
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.8410 (2), 8.5571 (2), 12.3533 (4)
α, β, γ (°)80.866 (2), 75.037 (1), 64.402 (1)
V3)721.10 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19570, 4226, 3259
Rint0.025
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.145, 1.06
No. of reflections4226
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.28

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.473.1683 (18)132
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

References

First citationBasavaiah, D., Rao, A. J. & Satyanarayana, T. (2003). Chem. Rev. 103, 811–891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHinckley, C. C. (1969). J. Am. Chem. Soc. 91, 5160–5162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMa, D.-Z., Wu, Y.-Q. & Zuo, X. (2005). Mater. Lett. 59, 3678–3681.  Web of Science CrossRef CAS Google Scholar
First citationMasson, G., Housseman, C. & Zhu, J. (2007). Angew. Chem. Int. Ed. 46, 4614–4628.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. & Batra, S. (2008). Tetrahedron, 64, 4511–4574.  Web of Science CrossRef CAS Google Scholar
First citationSoldatov, D. V., Tinnemans, P., Enright, G. D., Ratcliff, C. I., Diamente, P. R. & Ripmeester, J. A. (2003). Chem. Mater. 15, 3826–3840.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungme, S., Chotkhun, T., Chaichit, N., van Albada, G. A. & Reedijk, J. (2007). Inorg. Chem. Commun. 10, 843–848.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds