organic compounds
2-Chlorobenzenesulfonamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the crystal of the title compound, C6H6ClNO2S, N—H⋯O hydrogen bonds pack the molecules into sheets parallel to the ac plane.
Related literature
For our studies of the effect of substituents on the solid state structures of N-halo arylsulfonamides, see: Gowda et al. (2003); Gowda, Babitha et al. (2007); Gowda, Nayak et al. (2007); Gowda, Srilatha et al. (2007). For the parent benzenesulfonamide, see: Gowda, Nayak et al. (2007). For other aryl see: Gowda, Babitha et al. (2007); Gowda, Srilatha et al. (2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965).
andExperimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809031511/bt5028sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809031511/bt5028Isup2.hkl
The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in ethanol solution by a slow evaporation of the solvent at room temperature.
The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C6H6ClNO2S | F(000) = 392 |
Mr = 191.63 | Dx = 1.591 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C -2yc | Cell parameters from 1188 reflections |
a = 6.955 (1) Å | θ = 2.6–27.8° |
b = 14.848 (3) Å | µ = 0.68 mm−1 |
c = 7.751 (1) Å | T = 299 K |
β = 91.51 (1)° | Prism, colourless |
V = 800.2 (2) Å3 | 0.48 × 0.48 × 0.26 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 1031 independent reflections |
Radiation source: fine-focus sealed tube | 1004 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.008 |
Rotation method data acquisition using ω and phi scans. | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −8→4 |
Tmin = 0.735, Tmax = 0.842 | k = −18→15 |
1598 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2306P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.041 |
1031 reflections | Δρmax = 0.14 e Å−3 |
106 parameters | Δρmin = −0.21 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 215 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (8) |
C6H6ClNO2S | V = 800.2 (2) Å3 |
Mr = 191.63 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 6.955 (1) Å | µ = 0.68 mm−1 |
b = 14.848 (3) Å | T = 299 K |
c = 7.751 (1) Å | 0.48 × 0.48 × 0.26 mm |
β = 91.51 (1)° |
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector | 1031 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | 1004 reflections with I > 2σ(I) |
Tmin = 0.735, Tmax = 0.842 | Rint = 0.008 |
1598 measured reflections |
R[F2 > 2σ(F2)] = 0.022 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | Δρmax = 0.14 e Å−3 |
S = 1.03 | Δρmin = −0.21 e Å−3 |
1031 reflections | Absolute structure: Flack (1983), 215 Friedel pairs |
106 parameters | Absolute structure parameter: 0.04 (8) |
4 restraints |
Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.56409 (10) | 0.10747 (7) | 0.84733 (11) | 0.0700 (3) | |
S1 | 0.18379 (8) | 0.20974 (3) | 0.98884 (8) | 0.03276 (14) | |
O1 | −0.0067 (3) | 0.22742 (12) | 1.0448 (3) | 0.0486 (5) | |
O2 | 0.3434 (3) | 0.23916 (13) | 1.0939 (2) | 0.0535 (5) | |
N1 | 0.2010 (4) | 0.25747 (15) | 0.8048 (3) | 0.0396 (5) | |
H11 | 0.309 (3) | 0.251 (2) | 0.755 (4) | 0.048* | |
H12 | 0.105 (4) | 0.249 (2) | 0.740 (3) | 0.048* | |
C1 | 0.1995 (4) | 0.09052 (15) | 0.9649 (3) | 0.0335 (5) | |
C2 | 0.3626 (4) | 0.04740 (18) | 0.9082 (4) | 0.0443 (6) | |
C3 | 0.3663 (6) | −0.0459 (2) | 0.8966 (4) | 0.0588 (8) | |
H3 | 0.4755 | −0.0751 | 0.8582 | 0.071* | |
C4 | 0.2078 (7) | −0.0951 (2) | 0.9421 (4) | 0.0674 (10) | |
H4 | 0.2106 | −0.1576 | 0.9341 | 0.081* | |
C5 | 0.0464 (6) | −0.05329 (19) | 0.9990 (4) | 0.0590 (8) | |
H5 | −0.0600 | −0.0872 | 1.0292 | 0.071* | |
C6 | 0.0415 (4) | 0.04025 (18) | 1.0117 (4) | 0.0432 (6) | |
H6 | −0.0677 | 0.0689 | 1.0515 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0380 (4) | 0.0856 (6) | 0.0871 (6) | 0.0153 (4) | 0.0158 (4) | 0.0148 (5) |
S1 | 0.0338 (3) | 0.0335 (2) | 0.0310 (2) | −0.0015 (3) | 0.00213 (18) | −0.0023 (2) |
O1 | 0.0468 (11) | 0.0480 (9) | 0.0520 (11) | 0.0068 (9) | 0.0205 (9) | −0.0043 (9) |
O2 | 0.0590 (14) | 0.0501 (11) | 0.0506 (11) | −0.0152 (10) | −0.0172 (10) | −0.0031 (9) |
N1 | 0.0364 (11) | 0.0449 (11) | 0.0375 (11) | 0.0035 (10) | 0.0025 (8) | 0.0055 (9) |
C1 | 0.0381 (12) | 0.0343 (10) | 0.0280 (11) | 0.0023 (11) | −0.0025 (9) | 0.0013 (8) |
C2 | 0.0478 (16) | 0.0476 (13) | 0.0374 (13) | 0.0118 (13) | −0.0008 (12) | 0.0047 (11) |
C3 | 0.078 (2) | 0.0498 (15) | 0.0485 (15) | 0.0276 (17) | −0.0026 (15) | 0.0016 (13) |
C4 | 0.116 (3) | 0.0360 (14) | 0.0497 (18) | 0.0069 (19) | −0.0055 (19) | 0.0025 (12) |
C5 | 0.079 (2) | 0.0399 (14) | 0.0574 (18) | −0.0158 (15) | −0.0058 (17) | 0.0052 (13) |
C6 | 0.0445 (16) | 0.0412 (12) | 0.0436 (14) | −0.0049 (12) | −0.0026 (12) | 0.0022 (11) |
Cl1—C2 | 1.737 (3) | C2—C3 | 1.389 (4) |
S1—O1 | 1.429 (2) | C3—C4 | 1.376 (5) |
S1—O2 | 1.4275 (19) | C3—H3 | 0.9300 |
S1—N1 | 1.600 (2) | C4—C5 | 1.366 (5) |
S1—C1 | 1.784 (2) | C4—H4 | 0.9300 |
N1—H11 | 0.857 (19) | C5—C6 | 1.393 (4) |
N1—H12 | 0.835 (18) | C5—H5 | 0.9300 |
C1—C6 | 1.385 (4) | C6—H6 | 0.9300 |
C1—C2 | 1.384 (4) | ||
O1—S1—O2 | 118.92 (13) | C3—C2—Cl1 | 118.6 (2) |
O1—S1—N1 | 106.32 (13) | C4—C3—C2 | 119.8 (3) |
O2—S1—N1 | 107.32 (12) | C4—C3—H3 | 120.1 |
O1—S1—C1 | 105.88 (12) | C2—C3—H3 | 120.1 |
O2—S1—C1 | 108.31 (12) | C5—C4—C3 | 120.8 (3) |
N1—S1—C1 | 109.91 (11) | C5—C4—H4 | 119.6 |
S1—N1—H11 | 116 (2) | C3—C4—H4 | 119.6 |
S1—N1—H12 | 113 (2) | C4—C5—C6 | 119.8 (3) |
H11—N1—H12 | 114 (3) | C4—C5—H5 | 120.1 |
C6—C1—C2 | 119.8 (2) | C6—C5—H5 | 120.1 |
C6—C1—S1 | 117.2 (2) | C1—C6—C5 | 119.9 (3) |
C2—C1—S1 | 123.0 (2) | C1—C6—H6 | 120.1 |
C1—C2—C3 | 119.9 (3) | C5—C6—H6 | 120.1 |
C1—C2—Cl1 | 121.5 (2) | ||
O1—S1—C1—C6 | −3.7 (2) | S1—C1—C2—Cl1 | −2.5 (3) |
O2—S1—C1—C6 | 124.8 (2) | C1—C2—C3—C4 | −0.2 (4) |
N1—S1—C1—C6 | −118.19 (19) | Cl1—C2—C3—C4 | −179.3 (2) |
O1—S1—C1—C2 | 178.5 (2) | C2—C3—C4—C5 | −0.1 (4) |
O2—S1—C1—C2 | −52.9 (2) | C3—C4—C5—C6 | −0.1 (5) |
N1—S1—C1—C2 | 64.0 (2) | C2—C1—C6—C5 | −1.0 (4) |
C6—C1—C2—C3 | 0.7 (4) | S1—C1—C6—C5 | −178.8 (2) |
S1—C1—C2—C3 | 178.4 (2) | C4—C5—C6—C1 | 0.7 (4) |
C6—C1—C2—Cl1 | 179.77 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O1i | 0.86 (2) | 2.12 (2) | 2.908 (3) | 152 (3) |
N1—H12···O2ii | 0.84 (2) | 2.12 (2) | 2.941 (3) | 166 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H6ClNO2S |
Mr | 191.63 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 299 |
a, b, c (Å) | 6.955 (1), 14.848 (3), 7.751 (1) |
β (°) | 91.51 (1) |
V (Å3) | 800.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.48 × 0.48 × 0.26 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.735, 0.842 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1598, 1031, 1004 |
Rint | 0.008 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.022, 0.060, 1.03 |
No. of reflections | 1031 |
No. of parameters | 106 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.21 |
Absolute structure | Flack (1983), 215 Friedel pairs |
Absolute structure parameter | 0.04 (8) |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O1i | 0.857 (19) | 2.12 (2) | 2.908 (3) | 152 (3) |
N1—H12···O2ii | 0.835 (18) | 2.12 (2) | 2.941 (3) | 166 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z−1/2; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.
References
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660. CAS Google Scholar
Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424. CAS Google Scholar
Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128–129. CrossRef CAS Google Scholar
Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1–6. Google Scholar
O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides and their N-halo compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. In the present work, the structure of 2-chlorobenzenesulfonamde has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda et al., 2003; Gowda, Babitha et al. 2007; Gowda, Nayak et al. 2007; Gowda, Srilatha et al. 2007). The structure of the title compound (Fig. 1) closely resembles those of the parent benzenesulfonamide (Gowda, Nayak et al., 2007) and other aryl sulfonamides (Gowda, Babitha et al., 2007; Gowda, Srilatha et al., 2007; Jones & Weinkauf, 1993; Kumar et al., 1992; O'Connor & Maslen, 1965). The title compound crystallizes in monoclinic space group Cc in contrast to the monoclinic Pc space group observed with the parent sulfonamide (Gowda et al., 2007b) and orthorhombic Pbca space group with 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965) and monoclinic P21/n space group with 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The molecules in the title compound are packed into infinite 3-D molecular network through N1—H11···O1 and N1—H12···O2 hydrogen bonding (Table 1 & Fig.2).