organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 August 2009; accepted 10 August 2009; online 15 August 2009)

In the crystal of the title compound, C6H6ClNO2S, N—H⋯O hydrogen bonds pack the mol­ecules into sheets parallel to the ac plane.

Related literature

For our studies of the effect of substituents on the solid state structures of sulfonamides and N-halo aryl­sulfonamides, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656-660.]); Gowda, Babitha et al. (2007[Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.]); Gowda, Nayak et al. (2007[Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.]); Gowda, Srilatha et al. (2007[Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417-424.]). For the parent benzene­sulfonamide, see: Gowda, Nayak et al. (2007[Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.]). For other aryl sulfonamides, see: Gowda, Babitha et al. (2007[Gowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.]); Gowda, Srilatha et al. (2007[Gowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417-424.]); Jones & Weinkauf (1993[Jones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128-129.]); Kumar et al. (1992[Kumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1-6.]); O'Connor & Maslen (1965[O'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363-366.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6ClNO2S

  • Mr = 191.63

  • Monoclinic, C c

  • a = 6.955 (1) Å

  • b = 14.848 (3) Å

  • c = 7.751 (1) Å

  • β = 91.51 (1)°

  • V = 800.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 299 K

  • 0.48 × 0.48 × 0.26 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.735, Tmax = 0.842

  • 1598 measured reflections

  • 1031 independent reflections

  • 1004 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.060

  • S = 1.03

  • 1031 reflections

  • 106 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 215 Friedel pairs

  • Flack parameter: 0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1i 0.857 (19) 2.12 (2) 2.908 (3) 152 (3)
N1—H12⋯O2ii 0.835 (18) 2.12 (2) 2.941 (3) 166 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. Many arylsulfonamides and their N-halo compounds exhibit pharmacological, fungicidal and herbicidal activities due to their oxidizing action in aqueous, partial aqueous and non-aqueous media. In the present work, the structure of 2-chlorobenzenesulfonamde has been determined to explore the substituent effects on the solid state structures of sulfonamides and N-halo arylsulfonamides (Gowda et al., 2003; Gowda, Babitha et al. 2007; Gowda, Nayak et al. 2007; Gowda, Srilatha et al. 2007). The structure of the title compound (Fig. 1) closely resembles those of the parent benzenesulfonamide (Gowda, Nayak et al., 2007) and other aryl sulfonamides (Gowda, Babitha et al., 2007; Gowda, Srilatha et al., 2007; Jones & Weinkauf, 1993; Kumar et al., 1992; O'Connor & Maslen, 1965). The title compound crystallizes in monoclinic space group Cc in contrast to the monoclinic Pc space group observed with the parent sulfonamide (Gowda et al., 2007b) and orthorhombic Pbca space group with 4-fluorobenzenesulfonamide (Jones & Weinkauf, 1993) and 4-aminobenzenesulfonamide (O'Connor & Maslen, 1965) and monoclinic P21/n space group with 4-chlorobenzenesulfonamide and 4-bromobenzenesulfonamide (Gowda et al., 2003), and 4-methylbenzenesulfonamide (Kumar et al., 1992). The molecules in the title compound are packed into infinite 3-D molecular network through N1—H11···O1 and N1—H12···O2 hydrogen bonding (Table 1 & Fig.2).

Related literature top

For our studies of the effect of substituents on the solid state structures of sulfonamides and N-halo arylsulfonamides, see: Gowda et al. (2003); Gowda, Babitha et al. (2007); Gowda, Nayak et al. (2007); Gowda, Srilatha et al. (2007). For the parent benzenesulfonamide, see: Gowda, Nayak et al. (2007). For other aryl sulfonamides, see: Gowda, Babitha et al. (2007); Gowda, Srilatha et al. (2007); Jones & Weinkauf (1993); Kumar et al. (1992); O'Connor & Maslen (1965).

Experimental top

The purity of the commmercial sample (TCI, Tokyo) was checked and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in ethanol solution by a slow evaporation of the solvent at room temperature.

Refinement top

The H atoms of the NH2 group were located in difference map and refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2-Chlorobenzenesulfonamide top
Crystal data top
C6H6ClNO2SF(000) = 392
Mr = 191.63Dx = 1.591 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1188 reflections
a = 6.955 (1) Åθ = 2.6–27.8°
b = 14.848 (3) ŵ = 0.68 mm1
c = 7.751 (1) ÅT = 299 K
β = 91.51 (1)°Prism, colourless
V = 800.2 (2) Å30.48 × 0.48 × 0.26 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1031 independent reflections
Radiation source: fine-focus sealed tube1004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 84
Tmin = 0.735, Tmax = 0.842k = 1815
1598 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.2306P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.041
1031 reflectionsΔρmax = 0.14 e Å3
106 parametersΔρmin = 0.21 e Å3
4 restraintsAbsolute structure: Flack (1983), 215 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C6H6ClNO2SV = 800.2 (2) Å3
Mr = 191.63Z = 4
Monoclinic, CcMo Kα radiation
a = 6.955 (1) ŵ = 0.68 mm1
b = 14.848 (3) ÅT = 299 K
c = 7.751 (1) Å0.48 × 0.48 × 0.26 mm
β = 91.51 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1031 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1004 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.842Rint = 0.008
1598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.21 e Å3
1031 reflectionsAbsolute structure: Flack (1983), 215 Friedel pairs
106 parametersAbsolute structure parameter: 0.04 (8)
4 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56409 (10)0.10747 (7)0.84733 (11)0.0700 (3)
S10.18379 (8)0.20974 (3)0.98884 (8)0.03276 (14)
O10.0067 (3)0.22742 (12)1.0448 (3)0.0486 (5)
O20.3434 (3)0.23916 (13)1.0939 (2)0.0535 (5)
N10.2010 (4)0.25747 (15)0.8048 (3)0.0396 (5)
H110.309 (3)0.251 (2)0.755 (4)0.048*
H120.105 (4)0.249 (2)0.740 (3)0.048*
C10.1995 (4)0.09052 (15)0.9649 (3)0.0335 (5)
C20.3626 (4)0.04740 (18)0.9082 (4)0.0443 (6)
C30.3663 (6)0.0459 (2)0.8966 (4)0.0588 (8)
H30.47550.07510.85820.071*
C40.2078 (7)0.0951 (2)0.9421 (4)0.0674 (10)
H40.21060.15760.93410.081*
C50.0464 (6)0.05329 (19)0.9990 (4)0.0590 (8)
H50.06000.08721.02920.071*
C60.0415 (4)0.04025 (18)1.0117 (4)0.0432 (6)
H60.06770.06891.05150.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0380 (4)0.0856 (6)0.0871 (6)0.0153 (4)0.0158 (4)0.0148 (5)
S10.0338 (3)0.0335 (2)0.0310 (2)0.0015 (3)0.00213 (18)0.0023 (2)
O10.0468 (11)0.0480 (9)0.0520 (11)0.0068 (9)0.0205 (9)0.0043 (9)
O20.0590 (14)0.0501 (11)0.0506 (11)0.0152 (10)0.0172 (10)0.0031 (9)
N10.0364 (11)0.0449 (11)0.0375 (11)0.0035 (10)0.0025 (8)0.0055 (9)
C10.0381 (12)0.0343 (10)0.0280 (11)0.0023 (11)0.0025 (9)0.0013 (8)
C20.0478 (16)0.0476 (13)0.0374 (13)0.0118 (13)0.0008 (12)0.0047 (11)
C30.078 (2)0.0498 (15)0.0485 (15)0.0276 (17)0.0026 (15)0.0016 (13)
C40.116 (3)0.0360 (14)0.0497 (18)0.0069 (19)0.0055 (19)0.0025 (12)
C50.079 (2)0.0399 (14)0.0574 (18)0.0158 (15)0.0058 (17)0.0052 (13)
C60.0445 (16)0.0412 (12)0.0436 (14)0.0049 (12)0.0026 (12)0.0022 (11)
Geometric parameters (Å, º) top
Cl1—C21.737 (3)C2—C31.389 (4)
S1—O11.429 (2)C3—C41.376 (5)
S1—O21.4275 (19)C3—H30.9300
S1—N11.600 (2)C4—C51.366 (5)
S1—C11.784 (2)C4—H40.9300
N1—H110.857 (19)C5—C61.393 (4)
N1—H120.835 (18)C5—H50.9300
C1—C61.385 (4)C6—H60.9300
C1—C21.384 (4)
O1—S1—O2118.92 (13)C3—C2—Cl1118.6 (2)
O1—S1—N1106.32 (13)C4—C3—C2119.8 (3)
O2—S1—N1107.32 (12)C4—C3—H3120.1
O1—S1—C1105.88 (12)C2—C3—H3120.1
O2—S1—C1108.31 (12)C5—C4—C3120.8 (3)
N1—S1—C1109.91 (11)C5—C4—H4119.6
S1—N1—H11116 (2)C3—C4—H4119.6
S1—N1—H12113 (2)C4—C5—C6119.8 (3)
H11—N1—H12114 (3)C4—C5—H5120.1
C6—C1—C2119.8 (2)C6—C5—H5120.1
C6—C1—S1117.2 (2)C1—C6—C5119.9 (3)
C2—C1—S1123.0 (2)C1—C6—H6120.1
C1—C2—C3119.9 (3)C5—C6—H6120.1
C1—C2—Cl1121.5 (2)
O1—S1—C1—C63.7 (2)S1—C1—C2—Cl12.5 (3)
O2—S1—C1—C6124.8 (2)C1—C2—C3—C40.2 (4)
N1—S1—C1—C6118.19 (19)Cl1—C2—C3—C4179.3 (2)
O1—S1—C1—C2178.5 (2)C2—C3—C4—C50.1 (4)
O2—S1—C1—C252.9 (2)C3—C4—C5—C60.1 (5)
N1—S1—C1—C264.0 (2)C2—C1—C6—C51.0 (4)
C6—C1—C2—C30.7 (4)S1—C1—C6—C5178.8 (2)
S1—C1—C2—C3178.4 (2)C4—C5—C6—C10.7 (4)
C6—C1—C2—Cl1179.77 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.86 (2)2.12 (2)2.908 (3)152 (3)
N1—H12···O2ii0.84 (2)2.12 (2)2.941 (3)166 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H6ClNO2S
Mr191.63
Crystal system, space groupMonoclinic, Cc
Temperature (K)299
a, b, c (Å)6.955 (1), 14.848 (3), 7.751 (1)
β (°) 91.51 (1)
V3)800.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.48 × 0.48 × 0.26
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.735, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
1598, 1031, 1004
Rint0.008
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.060, 1.03
No. of reflections1031
No. of parameters106
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.21
Absolute structureFlack (1983), 215 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O1i0.857 (19)2.12 (2)2.908 (3)152 (3)
N1—H12···O2ii0.835 (18)2.12 (2)2.941 (3)166 (3)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Babitha, K. S., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.  CAS Google Scholar
First citationGowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Srilatha, Foro, S., Kozisek, J. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 417–424.  CAS Google Scholar
First citationJones, P. G. & Weinkauf, A. (1993). Z. Kristallogr. 208, 128–129.  CrossRef CAS Google Scholar
First citationKumar, S. V., Senadhi, S. E. & Rao, L. M. (1992). Z. Kristallogr. 202, 1–6.  Google Scholar
First citationO'Connor, B. H. & Maslen, E. N. (1965). Acta Cryst. 18, 363–366.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds