organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,3-di­meth­oxy­benzyl­­idene)propane-1,3-di­amine

aInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: dusek@fzu.cz

(Received 10 August 2009; accepted 11 August 2009; online 29 August 2009)

The title compound, C21H26N2O4, adopts an E configuration with respect to the azomethine C=N bonds. The dihedral angle between the two rings is 8.16 (8)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O inter­actions.

Related literature

For the chemistry of Schiff base derivatives, see: Morshedi et al. (2009a[Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009a). Polyhedron, 28, 167-171.],b[Morshedi, M., Amirnasr, M., Triki, S. & Khalaji, A. D. (2009b). Inorg. Chim. Acta, 362, 1637-1640.]); Dehno Khalaji et al. (2009[Dehno Khalaji, A., Fejfarova, K. & Dusek, M. (2009). Acta Cryst. E65, o1773.]); Khalaji et al. (2007[Khalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.]); Wang (2008[Wang, G.-X. (2008). Acta Cryst. E64, o1647.]); Fun et al. (2008[Fun, H.-K., Mirkhani, V. & Vartooni, A. R. (2008). Acta Cryst. E64, o1803-o1804.]). For their applications, see: Ardizzoia et al. (2009[Ardizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507-3512.]); Gao et al. (2003[Gao, E.-Q., Bai, S.-Q., Yue, Y.-F., Wang, Z.-M. & Yan, C.-H. (2003). Inorg. Chem. 42, 3642-3649.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.4

  • Orthorhombic, P n a 21

  • a = 15.3079 (3) Å

  • b = 9.2915 (2) Å

  • c = 13.8059 (3) Å

  • V = 1963.66 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 120 K

  • 0.51 × 0.31 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.628, Tmax = 0.871

  • 26538 measured reflections

  • 1623 independent reflections

  • 1616 reflections with I > 3σ(I)

  • Rint = 0.021

  • θmax = 62.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.077

  • S = 1.97

  • 1623 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.96 2.59 3.411 (2) 143
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2007[Petříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Schiff bases range among the most chelating ligands found in the field of coordination chemistry (Morshedi et al., 2009a,b). Their compounds with transition metals have wide applications in the field of magnetism (Gao et al., 2003) and catalysis (Ardizzoia et al., 2009). The title compound has been studied as an extension of our work on the structural characterization of bidentate Schiff base compounds with di- and trimethoxy benzaldehyde (Khalaji et al., 2007 and Dehno Khalaji et al., 2009).

The molecule of the title compound is shown in Fig.1. All bond lengths and angles are comparable with those observed in similar compounds (Khalaji et al., 2007 and Dehno Khalaji et al., 2009). The C7=N1 and C11=N2 bond lengths of 1.264 (2) and 1.263 (2) Å, respectively, conform to the value for a double bonds while C8—N1 and C10—N2 bond lengths of 1.458 (2) and 1.458 (2) Å, respectively, conform to the value for single bonds. The molecule displays an E configuration around the C=N double bond. The azomethine groups are coplanar with the aromatic rings. The dihedral angle between two phenyl rings is 8.16 (8)°. The neigbouring molecules are interconnected by C—H···O hydrogen bonds to infinite chains. These chains are linked by C—H···π interactions into sheets (Fig. 2).

Related literature top

For the chemistry of Schiff base derivatives, see: Morshedi et al. (2009a,b); Dehno Khalaji et al. (2009); Khalaji et al. (2007); Wang (2008); Fun et al. (2008). For their applications, see: Ardizzoia et al. (2009); Gao et al. (2003).

For related literature, see: Becker & Coppens (1974).

Experimental top

2,3-Dimethoxybenzaldehyde (0.2 mmol) and 1,3-propanediamine (0.1 mmol) were dissolved in ethanol (50 ml). The mixture was stirred at room temperature for 1 h to give a clear solution. Suitable crystals of the title compound for X-ray study were formed by slow evaporation of the solvent over 8 days at room temperature (Yield 85%).

Refinement top

All hydrogen atoms were discernible in difference Fourier maps and could be refined to reasonable geometry. According to common practice they were nevertheless kept in ideal positions during the refinement. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2*Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2007); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2007).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom-labeling scheme, with hydrogen bond shown as a dashed line. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 0.5 - x, 1/2 + y, z - 1/2]
[Figure 2] Fig. 2. The packing of (I) viewed along b, with hydrogen bonds shown as blue dashed lines and C—H···π interaction as red dashed lines.
N,N'-Bis(2,3-dimethoxybenzylidene)propane-1,3-diamine top
Crystal data top
C21H26N2O4F(000) = 792
Mr = 370.4Dx = 1.253 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 24214 reflections
a = 15.3079 (3) Åθ = 3.2–62.3°
b = 9.2915 (2) ŵ = 0.71 mm1
c = 13.8059 (3) ÅT = 120 K
V = 1963.66 (7) Å3Irregular shape, colorless
Z = 40.51 × 0.31 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1623 independent reflections
Radiation source: X-ray tube1616 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 20.7567 pixels mm-1θmax = 62.4°, θmin = 5.6°
Rotation method data acquisition using ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.628, Tmax = 0.871l = 1515
26538 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
wR(F2) = 0.077(Δ/σ)max = 0.038
S = 1.97Δρmax = 0.10 e Å3
1623 reflectionsΔρmin = 0.09 e Å3
244 parametersExtinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 2800 (1000)
105 constraints
Crystal data top
C21H26N2O4V = 1963.66 (7) Å3
Mr = 370.4Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 15.3079 (3) ŵ = 0.71 mm1
b = 9.2915 (2) ÅT = 120 K
c = 13.8059 (3) Å0.51 × 0.31 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
1623 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1616 reflections with I > 3σ(I)
Tmin = 0.628, Tmax = 0.871Rint = 0.021
26538 measured reflectionsθmax = 62.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.97Δρmax = 0.10 e Å3
1623 reflectionsΔρmin = 0.09 e Å3
244 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2009) Version 1.171.33.34d (release 27-02-2009 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26797 (8)0.00499 (13)0.18586 (12)0.0306 (4)
O20.18047 (7)0.18392 (11)0.07546 (13)0.0282 (3)
O30.46602 (7)0.01788 (12)0.27381 (11)0.0315 (4)
O40.57090 (7)0.12117 (13)0.40069 (13)0.0348 (4)
N10.22853 (8)0.43567 (14)0.17846 (14)0.0279 (4)
N20.46937 (8)0.45543 (14)0.24531 (14)0.0281 (4)
C10.18698 (9)0.20195 (17)0.11887 (15)0.0239 (4)
C20.20316 (10)0.05443 (16)0.12523 (15)0.0239 (4)
C30.16066 (9)0.04171 (17)0.06289 (16)0.0246 (4)
C40.10498 (10)0.01093 (17)0.00881 (15)0.0274 (5)
C50.09133 (10)0.15967 (17)0.01601 (15)0.0292 (5)
C60.13056 (11)0.25368 (17)0.04693 (16)0.0272 (5)
C70.23004 (10)0.30040 (17)0.18825 (14)0.0246 (4)
C80.27152 (10)0.52016 (17)0.25365 (14)0.0263 (5)
C90.34446 (10)0.61189 (16)0.21099 (14)0.0262 (5)
C100.41895 (11)0.52360 (17)0.16833 (15)0.0277 (5)
C110.47382 (10)0.31972 (17)0.24671 (15)0.0253 (5)
C120.52555 (9)0.24424 (17)0.32177 (14)0.0244 (4)
C130.52359 (10)0.09464 (17)0.32989 (15)0.0249 (4)
C140.57636 (10)0.02498 (19)0.39893 (16)0.0275 (5)
C150.62910 (10)0.10661 (19)0.46004 (15)0.0301 (5)
C160.62956 (11)0.25595 (19)0.45242 (15)0.0303 (5)
C170.57829 (10)0.32443 (18)0.38485 (15)0.0272 (5)
C180.23861 (13)0.0640 (2)0.27226 (15)0.0402 (6)
C190.14018 (12)0.28468 (19)0.01141 (16)0.0327 (5)
C200.50416 (12)0.0730 (2)0.20153 (18)0.0396 (6)
C210.62707 (12)0.1948 (2)0.46665 (17)0.0400 (6)
H40.0763660.0539190.0526750.0329*
H50.0538140.1963980.0659460.035*
H60.1193660.3550510.0417220.0327*
H70.2602690.260040.2427840.0295*
H8a0.2953030.4567150.3017820.0315*
H8b0.2294310.5813080.2846810.0315*
H9a0.320860.6740640.1620030.0314*
H9b0.3669720.6751380.2599830.0314*
H10a0.3955480.4509550.1262350.0333*
H10b0.4564280.585220.1310650.0333*
H110.4432760.2648080.1985150.0303*
H150.665150.0598580.5074460.0361*
H160.6660350.311720.4947370.0364*
H170.57860.4275750.3808690.0327*
H18a0.2880710.098410.3081890.0482*
H18b0.2065360.0035920.3110130.0482*
H18c0.2014830.143530.2557090.0482*
H19a0.1565760.3806450.0296780.0393*
H19b0.0778480.2749030.0152110.0393*
H19c0.1590470.2662420.0537390.0393*
H20a0.45920.1086720.1594260.0475*
H20b0.5457470.0187760.1643990.0475*
H20c0.5331220.152410.232290.0475*
H21a0.6159740.2964070.4632110.0479*
H21b0.6868550.1762740.4497860.0479*
H21c0.6161540.161410.5313230.0479*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0289 (6)0.0321 (7)0.0309 (6)0.0034 (4)0.0083 (5)0.0007 (5)
O20.0280 (6)0.0220 (6)0.0346 (6)0.0006 (4)0.0038 (5)0.0025 (5)
O30.0245 (6)0.0338 (6)0.0362 (7)0.0033 (4)0.0073 (5)0.0013 (5)
O40.0298 (6)0.0339 (6)0.0405 (7)0.0035 (4)0.0091 (5)0.0143 (6)
N10.0261 (7)0.0265 (7)0.0310 (8)0.0016 (5)0.0001 (6)0.0017 (6)
N20.0267 (7)0.0287 (7)0.0288 (7)0.0025 (5)0.0028 (6)0.0020 (6)
C10.0185 (7)0.0264 (8)0.0268 (8)0.0012 (6)0.0048 (6)0.0005 (7)
C20.0185 (7)0.0281 (8)0.0250 (8)0.0017 (6)0.0011 (6)0.0002 (6)
C30.0194 (7)0.0245 (8)0.0298 (8)0.0010 (5)0.0052 (7)0.0003 (7)
C40.0179 (7)0.0347 (9)0.0297 (9)0.0020 (6)0.0000 (7)0.0032 (7)
C50.0225 (8)0.0348 (8)0.0303 (10)0.0045 (6)0.0027 (7)0.0020 (7)
C60.0237 (8)0.0259 (8)0.0322 (8)0.0035 (6)0.0025 (6)0.0011 (7)
C70.0219 (7)0.0269 (8)0.0250 (8)0.0005 (6)0.0021 (6)0.0006 (6)
C80.0286 (9)0.0236 (7)0.0266 (8)0.0038 (6)0.0008 (7)0.0028 (7)
C90.0308 (8)0.0219 (8)0.0258 (8)0.0023 (6)0.0002 (6)0.0004 (6)
C100.0306 (9)0.0268 (8)0.0257 (8)0.0014 (6)0.0025 (7)0.0002 (7)
C110.0214 (8)0.0302 (8)0.0243 (8)0.0007 (5)0.0019 (6)0.0039 (7)
C120.0184 (7)0.0313 (8)0.0236 (8)0.0013 (5)0.0046 (6)0.0018 (7)
C130.0181 (7)0.0327 (8)0.0241 (8)0.0017 (6)0.0010 (6)0.0002 (7)
C140.0213 (7)0.0355 (8)0.0256 (8)0.0001 (6)0.0033 (6)0.0032 (7)
C150.0198 (7)0.0461 (10)0.0243 (8)0.0018 (7)0.0018 (6)0.0025 (7)
C160.0229 (8)0.0417 (9)0.0264 (9)0.0008 (6)0.0011 (6)0.0086 (8)
C170.0195 (8)0.0334 (9)0.0289 (9)0.0016 (6)0.0038 (6)0.0073 (7)
C180.0560 (12)0.0369 (10)0.0277 (9)0.0151 (8)0.0010 (8)0.0018 (7)
C190.0338 (9)0.0256 (8)0.0388 (9)0.0044 (7)0.0058 (7)0.0029 (7)
C200.0442 (10)0.0393 (9)0.0352 (10)0.0108 (8)0.0042 (8)0.0069 (8)
C210.0356 (10)0.0442 (10)0.0401 (10)0.0030 (7)0.0057 (8)0.0177 (9)
Geometric parameters (Å, º) top
O1—C21.377 (2)C9—H9a0.96
O1—C181.427 (2)C9—H9b0.96
O2—C31.3668 (18)C10—H10a0.96
O2—C191.428 (2)C10—H10b0.96
O3—C131.373 (2)C11—C121.481 (3)
O3—C201.432 (3)C11—H110.96
O4—C141.361 (2)C12—C131.395 (2)
O4—C211.427 (3)C12—C171.402 (2)
N1—C71.264 (2)C13—C141.407 (3)
N1—C81.458 (2)C14—C151.392 (3)
N2—C101.458 (2)C15—C161.392 (2)
N2—C111.263 (2)C15—H150.96
C1—C21.396 (2)C16—C171.375 (3)
C1—C61.401 (3)C16—H160.96
C1—C71.479 (2)C17—H170.96
C2—C31.401 (2)C18—H18a0.96
C3—C41.395 (3)C18—H18b0.96
C4—C51.401 (2)C18—H18c0.96
C4—H40.96C19—H19a0.96
C5—C61.371 (3)C19—H19b0.96
C5—H50.96C19—H19c0.96
C6—H60.96C20—H20a0.96
C7—H70.96C20—H20b0.96
C8—C91.523 (2)C20—H20c0.96
C8—H8a0.96C21—H21a0.96
C8—H8b0.96C21—H21b0.96
C9—C101.523 (2)C21—H21c0.96
C2—O1—C18115.54 (13)N2—C11—C12120.82 (17)
C3—O2—C19117.35 (15)N2—C11—H11119.5897
C13—O3—C20115.95 (13)C12—C11—H11119.5889
C14—O4—C21116.94 (15)C11—C12—C13121.11 (15)
C7—N1—C8116.79 (16)C11—C12—C17119.41 (14)
C10—N2—C11118.25 (16)C13—C12—C17119.48 (16)
C2—C1—C6119.40 (16)O3—C13—C12119.09 (15)
C2—C1—C7119.17 (16)O3—C13—C14120.77 (15)
C6—C1—C7121.43 (14)C12—C13—C14120.03 (16)
O1—C2—C1119.59 (15)O4—C14—C13115.84 (16)
O1—C2—C3119.70 (13)O4—C14—C15124.64 (17)
C1—C2—C3120.35 (16)C13—C14—C15119.52 (16)
O2—C3—C2115.82 (16)C14—C15—C16120.02 (17)
O2—C3—C4124.38 (16)C14—C15—H15119.9905
C2—C3—C4119.75 (14)C16—C15—H15119.9904
C3—C4—C5119.16 (16)C15—C16—C17120.65 (17)
C3—C4—H4120.42C15—C16—H16119.6771
C5—C4—H4120.4205C17—C16—H16119.6769
C4—C5—C6121.22 (17)C12—C17—C16120.28 (15)
C4—C5—H5119.3896C12—C17—H17119.8593
C6—C5—H5119.3903C16—C17—H17119.8611
C1—C6—C5120.05 (15)O1—C18—H18a109.4709
C1—C6—H6119.9753O1—C18—H18b109.4711
C5—C6—H6119.9765O1—C18—H18c109.4709
N1—C7—C1122.50 (17)H18a—C18—H18b109.4714
N1—C7—H7118.7511H18a—C18—H18c109.4717
C1—C7—H7118.7506H18b—C18—H18c109.4712
N1—C8—C9110.91 (16)O2—C19—H19a109.4712
N1—C8—H8a109.4708O2—C19—H19b109.4713
N1—C8—H8b109.4707O2—C19—H19c109.4707
C9—C8—H8a109.4715H19a—C19—H19b109.4714
C9—C8—H8b109.4712H19a—C19—H19c109.4716
H8a—C8—H8b107.9975H19b—C19—H19c109.4711
C8—C9—C10113.38 (13)O3—C20—H20a109.4712
C8—C9—H9a109.4711O3—C20—H20b109.4716
C8—C9—H9b109.471O3—C20—H20c109.4718
C10—C9—H9a109.4708H20a—C20—H20b109.471
C10—C9—H9b109.4724H20a—C20—H20c109.4707
H9a—C9—H9b105.2553H20b—C20—H20c109.4711
N2—C10—C9110.39 (16)O4—C21—H21a109.4718
N2—C10—H10a109.4708O4—C21—H21b109.4707
N2—C10—H10b109.4703O4—C21—H21c109.4713
C9—C10—H10a109.472H21a—C21—H21b109.4709
C9—C10—H10b109.4717H21a—C21—H21c109.4715
H10a—C10—H10b108.5415H21b—C21—H21c109.4711
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.962.593.411 (2)143
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.4
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)15.3079 (3), 9.2915 (2), 13.8059 (3)
V3)1963.66 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.51 × 0.31 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.628, 0.871
No. of measured, independent and
observed [I > 3σ(I)] reflections
26538, 1623, 1616
Rint0.021
θmax (°)62.4
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.077, 1.97
No. of reflections1623
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.09

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2007), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.962.593.411 (2)143
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We acknowledge Golestan University (GU) for partial support of this work, the institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic.

References

First citationArdizzoia, G. A., Brenna, S., Castelli, F. & Galli, S. (2009). Inorg. Chim. Acta, 362, 3507–3512.  Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDehno Khalaji, A., Fejfarova, K. & Dusek, M. (2009). Acta Cryst. E65, o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V. & Vartooni, A. R. (2008). Acta Cryst. E64, o1803–o1804.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, E.-Q., Bai, S.-Q., Yue, Y.-F., Wang, Z.-M. & Yan, C.-H. (2003). Inorg. Chem. 42, 3642–3649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKhalaji, A. D., Brad, K. & Zhang, Y. (2007). Acta Cryst. E63, o4389.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009a). Polyhedron, 28, 167–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorshedi, M., Amirnasr, M., Triki, S. & Khalaji, A. D. (2009b). Inorg. Chim. Acta, 362, 1637–1640.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2007). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationWang, G.-X. (2008). Acta Cryst. E64, o1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds