organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-6-methyl-1,3-benzo­thia­zole–deca­nedioic acid (2/1)

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance of Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 11 August 2009; accepted 12 August 2009; online 19 August 2009)

Co-crystallization of 2-amino-6-methyl-1,3-­benzothia­zole with deca­nedioic acid under hydro­thermal conditions afforded the title 2:1 co-crystal, 2C8H8N2S·C10H18O4. The deca­nedioic acid mol­ecule is located on an inversion centre. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect the components into a two-dimensional wave-like layer structure extending parallel to (100).

Related literature

For mol­ecular self-assembly and crystal engineering, see: Sun & Cui (2008[Sun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526-1532.]); Hunter (1993[Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.]); Yang et al. (2005[Yang, X. D., Wu, D. Q., Ranford, J. D. & Vittal, J. J. (2005). Cryst. Growth Des. 5, 41-43.]). For the solid structures and properties of metal complexes of amino­benzothia­zole and its derivatives, see: Lynch et al. (1998[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.], 1999[Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695-703.]); Sun & Cui (2008[Sun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526-1532.]); Popović et al. (2002[Popović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. & Racané, L. (2003). Acta Cryst. C59, m4-m6.]); Antiñolo et al. (2007[Antiñolo, A., García-Yuste, S., Otero, A., Pérez-Flores, J. C., López-Solera, I. & Rodríguez, A. M. (2007). J. Organomet. Chem. 692, 3328-3339.]); Dong et al. (2002[Dong, H. S., Quan, B. & Tian, H. Q. (2002). J. Mol. Struct. 641, 147-152.]); Chen et al. (2008[Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 12, 1951-1962.]); Zhang et al. (2009[Zhang, N., Liu, K.-S. & Zhao, X.-J. (2009). Acta Cryst. E65, o1398.]). For the structures of deca­nedioic acid-based metal complexes and co-crystals, see: Xian et al. (2009[Xian, H. D., Li, H. Q., Shi, X., Liu, J. F. & Zhao, G. L. (2009). Inorg. Chem. Commun. 12, 177-180.]); Braga et al. (2006[Braga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877-3879.]); Aakeröy et al. (2007[Aakeröy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46-54.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H8N2S·C10H18O4

  • Mr = 530.71

  • Monoclinic, P 21 /n

  • a = 5.3791 (5) Å

  • b = 21.822 (2) Å

  • c = 11.9431 (11) Å

  • β = 91.6660 (10)°

  • V = 1401.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.952

  • 7545 measured reflections

  • 2470 independent reflections

  • 1822 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.05

  • 2470 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.78 2.597 (2) 171
N2—H2A⋯O2 0.86 2.09 2.914 (2) 161
N2—H2B⋯O1i 0.86 2.14 2.954 (2) 157
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the past decades, molecular self-/assembly by classical coordination bonds and/or intermolecular non-covalent interactions such as hydrogen-bonding, π···π stacking, electrostatic interactions and so on, has been becoming more and more attractive in biology, biochemistry and new material fields (Sun et al., 2008; Hunter, 1993; Yang et al., 2005).

Acting as one of the excellent building blocks with multiple hydrogen-bonding sites and metal ion binding donors, aminobenzothiazole and its derivatives have been extensively utilized in the new materials, biochemistry and agriculture chemistry, due to the lower toxicity, high biological activity as well as excellent chemical reactivity (Lynch et al., 1998; Lynch et al., 1999; Sun et al., 2008; Popović et al., 2002; Antiñolo et al., 2007; Dong et al., 2002; Chen et al., 2008). On the other hand, the long decanedioic acid with adjustable deprotonated form and flexible aliphatic chain has also exhibited novel functions such as dianion templating (Xian et al., 2009) and heterosynthons with nitrogen-containing compounds (Braga et al., 2006; Aakeröy et al., 2007) in the fields of metal complexes and molecular co-crystals.

Thus, as a continuation of molecular assembly behavior in the solid state, in the present paper, the rigid 2-amino-6-methyl-1,3-benzothiazole (Ambt) and flexible decanedioic acid were selected as building blocks to cocrystallize. As a result, an intermolecular hydrogen bonded adduct, (I), was obtained under the hydrothermal conditions.

As shown in Fig. 1, the asymmetric unit of (I) comprises one neutral Ambt molecule with no crystallographically imposed symmetry and half a decanedioic acid located on a centre of inversion. Obviously, no proton transfer was observed for the neutral cocrystal, which is much different from the 2-aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate (Zhang et al., 2009). The exocyclic amino group of Ambt is roughly coplanar with the benzothiazole ring. Similarily, the carboxylic residues of decanedioic acid are also co-planar with their long aliphatic chain. In the packing structure of I, two pairs of the intermolecuar O1—H1 ···N1 and N2—H2A ···O2 hydrogen-bonding interactions (Table 1) connect the two Ambt molecules and one decanedioic acid.

Related literature top

For molecular self-assembly and crystal engineering, see: Sun et al. (2008); Hunter (1993); Yang et al. (2005). For the solid structures and properties of metal complexes of aminobenzothiazole and its derivatives, see: Lynch et al. (1998, 1999); Sun et al. (2008); Popović et al. (2002); Antiñolo et al. (2007); Dong et al. (2002); Chen et al. (2008); Zhang et al. (2009). For the structures of decanedioic acid-based metal complexes and co-crystals, see: Xian et al. (2009); Braga et al. (2006); Aakeröy et al. (2007).

Experimental top

To an aqueous solution of Ambt (40.4 mg, 0.2 mmol) was slowly added an aqueous solution of decanedioic acid (20.2 mg, 0.1 mmol) with constant stirring. After further stirring for about ten minutes, the resulting mixture was sealed in a stainless steel vessel and heated at 140 oC for 3 days. After the mixture was cooled to room temperature at a rate of 5 oC / h, pale-yellow block-shaped crystals suitable for X-ray diffraction were obtained directly, washed with ethanol and dried in air.Yield: 34% based on Ambt. Anal. calcd for C13H17N2O2S: C, 58.84; H, 6.46; N, 10.56%. Found: C, 58.78; H, 6.56; N,10.70%.

Refinement top

H-atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C—H = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å. all H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H)] = 1.2 Ueq (C, N, O)

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawnat the 30% probability level. The dashed lines indicate intermolecular hydrogen bonds.[Symmetry code: (A) 4 – x, 1 – y, – z]
[Figure 2] Fig. 2. The two-dimensional layer of (I) formed by N–H···O and O–H ···O hydrogen bonding interactions.
2-Amino-6-methyl-1,3-benzothiazole–decanedioic acid (2/1) top
Crystal data top
2C8H8N2S·C10H18O4F(000) = 564
Mr = 530.71Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3791 (5) ÅCell parameters from 1765 reflections
b = 21.822 (2) Åθ = 2.5–22.8°
c = 11.9431 (11) ŵ = 0.23 mm1
β = 91.666 (1)°T = 293 K
V = 1401.3 (2) Å3Block, pale-yellow
Z = 20.32 × 0.24 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2470 independent reflections
Radiation source: fine-focus sealed tube1822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.931, Tmax = 0.952k = 2521
7545 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.3107P]
where P = (Fo2 + 2Fc2)/3
2470 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
2C8H8N2S·C10H18O4V = 1401.3 (2) Å3
Mr = 530.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.3791 (5) ŵ = 0.23 mm1
b = 21.822 (2) ÅT = 293 K
c = 11.9431 (11) Å0.32 × 0.24 × 0.22 mm
β = 91.666 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1822 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.952Rint = 0.024
7545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2470 reflectionsΔρmin = 0.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47667 (11)0.17050 (3)0.20230 (5)0.0647 (2)
O11.1513 (3)0.27012 (7)0.03449 (11)0.0595 (4)
H11.04560.25310.00260.089*
O21.2105 (3)0.32343 (7)0.12223 (12)0.0662 (4)
N10.8009 (3)0.21067 (7)0.06387 (13)0.0502 (4)
N20.8217 (3)0.25824 (8)0.23838 (14)0.0628 (5)
H2A0.94200.28150.21890.075*
H2B0.76430.26100.30460.075*
C10.7248 (4)0.21790 (9)0.16608 (16)0.0495 (5)
C20.4781 (4)0.13827 (9)0.06865 (17)0.0536 (5)
C30.3269 (4)0.09285 (10)0.02272 (19)0.0658 (6)
H3A0.20240.07540.06480.079*
C40.3619 (4)0.07353 (10)0.0861 (2)0.0647 (6)
C50.5474 (4)0.10135 (11)0.14663 (18)0.0650 (6)
H5A0.57030.08890.22010.078*
C60.6984 (4)0.14661 (10)0.10228 (17)0.0599 (6)
H6A0.82140.16430.14490.072*
C70.6645 (4)0.16541 (9)0.00673 (16)0.0488 (5)
C80.1999 (6)0.02374 (13)0.1383 (2)0.0920 (9)
H8A0.08190.01010.08500.138*
H8B0.30230.01010.15970.138*
H8C0.11300.03970.20330.138*
C91.2624 (4)0.31276 (9)0.02632 (16)0.0469 (5)
C101.4559 (4)0.34752 (9)0.03539 (16)0.0511 (5)
H10A1.37580.36810.09870.061*
H10B1.57400.31850.06480.061*
C111.5968 (4)0.39443 (9)0.03408 (16)0.0509 (5)
H11A1.69310.37350.09240.061*
H11B1.47880.42100.07010.061*
C121.7698 (4)0.43316 (9)0.03430 (17)0.0517 (5)
H12A1.88550.40640.07130.062*
H12B1.67260.45440.09200.062*
C131.9159 (4)0.47985 (9)0.03387 (16)0.0511 (5)
H13A2.01640.45850.09010.061*
H13B1.80000.50580.07270.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0678 (4)0.0744 (4)0.0529 (3)0.0197 (3)0.0191 (3)0.0042 (3)
O10.0673 (10)0.0637 (9)0.0484 (8)0.0271 (7)0.0198 (7)0.0071 (7)
O20.0763 (11)0.0750 (10)0.0484 (8)0.0275 (8)0.0207 (7)0.0107 (7)
N10.0517 (10)0.0565 (10)0.0428 (9)0.0120 (8)0.0086 (7)0.0036 (7)
N20.0740 (13)0.0691 (12)0.0460 (9)0.0193 (10)0.0129 (9)0.0042 (9)
C10.0512 (12)0.0513 (11)0.0464 (11)0.0036 (9)0.0074 (9)0.0084 (9)
C20.0538 (12)0.0549 (12)0.0524 (11)0.0087 (10)0.0061 (9)0.0091 (10)
C30.0606 (14)0.0675 (14)0.0695 (14)0.0214 (12)0.0070 (11)0.0113 (12)
C40.0671 (15)0.0618 (13)0.0646 (14)0.0132 (12)0.0080 (11)0.0024 (11)
C50.0712 (15)0.0740 (15)0.0497 (12)0.0096 (12)0.0002 (11)0.0010 (11)
C60.0615 (14)0.0691 (14)0.0495 (12)0.0136 (11)0.0063 (10)0.0034 (10)
C70.0482 (12)0.0515 (11)0.0465 (11)0.0050 (9)0.0012 (9)0.0087 (9)
C80.097 (2)0.0889 (19)0.0893 (18)0.0331 (17)0.0044 (16)0.0102 (16)
C90.0476 (12)0.0457 (11)0.0477 (11)0.0043 (9)0.0069 (9)0.0008 (9)
C100.0518 (12)0.0497 (11)0.0525 (12)0.0099 (9)0.0122 (9)0.0013 (9)
C110.0491 (12)0.0511 (12)0.0527 (11)0.0076 (9)0.0057 (9)0.0029 (9)
C120.0474 (12)0.0519 (12)0.0561 (12)0.0085 (9)0.0078 (9)0.0001 (9)
C130.0482 (12)0.0515 (12)0.0538 (11)0.0069 (9)0.0053 (9)0.0040 (9)
Geometric parameters (Å, º) top
S1—C21.744 (2)C6—C71.382 (3)
S1—C11.753 (2)C6—H6A0.9300
O1—C91.313 (2)C8—H8A0.9600
O1—H10.8200C8—H8B0.9600
O2—C91.209 (2)C8—H8C0.9600
N1—C11.308 (2)C9—C101.499 (3)
N1—C71.397 (2)C10—C111.508 (3)
N2—C11.329 (2)C10—H10A0.9700
N2—H2A0.8600C10—H10B0.9700
N2—H2B0.8600C11—C121.514 (3)
C2—C31.385 (3)C11—H11A0.9700
C2—C71.395 (3)C11—H11B0.9700
C3—C41.385 (3)C12—C131.510 (3)
C3—H3A0.9300C12—H12A0.9700
C4—C51.388 (3)C12—H12B0.9700
C4—C81.516 (3)C13—C13i1.513 (4)
C5—C61.375 (3)C13—H13A0.9700
C5—H5A0.9300C13—H13B0.9700
C2—S1—C189.34 (9)C4—C8—H8C109.5
C9—O1—H1109.5H8A—C8—H8C109.5
C1—N1—C7111.53 (16)H8B—C8—H8C109.5
C1—N2—H2A120.0O2—C9—O1123.13 (17)
C1—N2—H2B120.0O2—C9—C10123.42 (18)
H2A—N2—H2B120.0O1—C9—C10113.44 (16)
N1—C1—N2123.95 (18)C9—C10—C11114.71 (16)
N1—C1—S1114.85 (15)C9—C10—H10A108.6
N2—C1—S1121.18 (15)C11—C10—H10A108.6
C3—C2—C7121.1 (2)C9—C10—H10B108.6
C3—C2—S1129.25 (16)C11—C10—H10B108.6
C7—C2—S1109.65 (15)H10A—C10—H10B107.6
C4—C3—C2119.7 (2)C10—C11—C12112.90 (16)
C4—C3—H3A120.2C10—C11—H11A109.0
C2—C3—H3A120.2C12—C11—H11A109.0
C3—C4—C5118.4 (2)C10—C11—H11B109.0
C3—C4—C8120.8 (2)C12—C11—H11B109.0
C5—C4—C8120.8 (2)H11A—C11—H11B107.8
C6—C5—C4122.6 (2)C13—C12—C11113.84 (16)
C6—C5—H5A118.7C13—C12—H12A108.8
C4—C5—H5A118.7C11—C12—H12A108.8
C5—C6—C7118.9 (2)C13—C12—H12B108.8
C5—C6—H6A120.6C11—C12—H12B108.8
C7—C6—H6A120.6H12A—C12—H12B107.7
C6—C7—C2119.34 (19)C12—C13—C13i114.4 (2)
C6—C7—N1126.03 (18)C12—C13—H13A108.7
C2—C7—N1114.63 (17)C13i—C13—H13A108.7
C4—C8—H8A109.5C12—C13—H13B108.7
C4—C8—H8B109.5C13i—C13—H13B108.7
H8A—C8—H8B109.5H13A—C13—H13B107.6
C7—N1—C1—N2179.62 (19)C5—C6—C7—C20.2 (3)
C7—N1—C1—S10.5 (2)C5—C6—C7—N1179.8 (2)
C2—S1—C1—N10.29 (17)C3—C2—C7—C60.0 (3)
C2—S1—C1—N2179.42 (18)S1—C2—C7—C6179.96 (17)
C1—S1—C2—C3180.0 (2)C3—C2—C7—N1179.69 (19)
C1—S1—C2—C70.02 (16)S1—C2—C7—N10.3 (2)
C7—C2—C3—C40.5 (3)C1—N1—C7—C6179.8 (2)
S1—C2—C3—C4179.45 (19)C1—N1—C7—C20.5 (3)
C2—C3—C4—C50.9 (4)O2—C9—C10—C114.3 (3)
C2—C3—C4—C8179.8 (2)O1—C9—C10—C11176.76 (17)
C3—C4—C5—C60.8 (4)C9—C10—C11—C12173.70 (17)
C8—C4—C5—C6179.9 (2)C10—C11—C12—C13179.12 (17)
C4—C5—C6—C70.2 (4)C11—C12—C13—C13i178.3 (2)
Symmetry code: (i) x+4, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.597 (2)171
N2—H2A···O20.862.092.914 (2)161
N2—H2B···O1ii0.862.142.954 (2)157
Symmetry code: (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C8H8N2S·C10H18O4
Mr530.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.3791 (5), 21.822 (2), 11.9431 (11)
β (°) 91.666 (1)
V3)1401.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
7545, 2470, 1822
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.05
No. of reflections2470
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.782.597 (2)171.3
N2—H2A···O20.862.092.914 (2)161.2
N2—H2B···O1i0.862.142.954 (2)157.1
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Normal University.

References

First citationAakeröy, C. B., Hussain, I., Forbes, S. & Desper, J. (2007). CrystEngComm, 9, 46–54.  Google Scholar
First citationAntiñolo, A., García-Yuste, S., Otero, A., Pérez-Flores, J. C., López-Solera, I. & Rodríguez, A. M. (2007). J. Organomet. Chem. 692, 3328–3339.  Google Scholar
First citationBraga, D., Giaffreda, S. L. & Grepioni, F. (2006). Chem. Commun. pp. 3877–3879.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 12, 1951–1962.  Web of Science CSD CrossRef Google Scholar
First citationDong, H. S., Quan, B. & Tian, H. Q. (2002). J. Mol. Struct. 641, 147–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584–1586.  CrossRef Web of Science Google Scholar
First citationLynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.  CAS Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. & Racané, L. (2003). Acta Cryst. C59, m4–m6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. F. & Cui, Y. P. (2008). Chin. J. Struct. Chem. 27, 1526–1532.  CAS Google Scholar
First citationXian, H. D., Li, H. Q., Shi, X., Liu, J. F. & Zhao, G. L. (2009). Inorg. Chem. Commun. 12, 177–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, X. D., Wu, D. Q., Ranford, J. D. & Vittal, J. J. (2005). Cryst. Growth Des. 5, 41–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, N., Liu, K.-S. & Zhao, X.-J. (2009). Acta Cryst. E65, o1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds