metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1110-m1111

Aqua­{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}(4-hy­droxy­benzoato)manganese(III)

aDepartment of Chemistry, SN College, Varkala, Kerala 695 145, India, and bDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dasthampi@hotmail.com

(Received 12 August 2009; accepted 17 August 2009; online 22 August 2009)

The title compound, [Mn(C18H18N2O4)(C7H5O3)(H2O)], was synthesized by a template reaction of ethane-1,2-diamine and 3-methoxy­salicylaldehyde in presence of manganese(II) 4-hydroxy­benzoate. The Jahn–Teller-distorted manganese(III) centre has an octa­hedral geometry. Extensive O—H⋯O hydrogen-bonding inter­actions generate a two-dimensional sheet structure parallel to (103).

Related literature

For background to the coordination chemistry of manganese, see: Christou (2005[Christou, G. (2005). Polyhedron, 24, 2065-2075.]); Yocum & Pecoraro (1999[Yocum, C. F. & Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182-187.]); McEvoy & Brudvig (2006[McEvoy, J. P. & Brudvig, G. W. (2006). Chem. Rev. 106, 4455-4483.]); Pecoraro (1992[Pecoraro, V. L. (1992). Editor. Manganese Redox Enzymes. New York: Verlag-Chemie.]). For the structures of manganese complexes containing Schiff base and carboxyl­ate ligands, see: Bermejo et al. (2006[Bermejo, M. R., Fernández, M. I., González-Noya, A. M., Maneiro, M., Pedrido, R., Rodríguez, M. J., García-Monteagudo, J. C. & Donnadieu, B. (2006). J. Inorg. Biochem. 9, 1470-1478.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C18H18N2O4)(C7H5O3)(H2O)]

  • Mr = 536.41

  • Monoclinic, P 21 /c

  • a = 8.5988 (3) Å

  • b = 13.5524 (5) Å

  • c = 21.1335 (8) Å

  • β = 93.280 (2)°

  • V = 2458.75 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.82 mm−1

  • T = 100 K

  • 0.43 × 0.38 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.229, Tmax = 0.388

  • 26252 measured reflections

  • 4259 independent reflections

  • 3766 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.04

  • 4259 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O5i 0.84 1.79 2.599 (2) 161
O3—H2W⋯O7ii 0.84 2.32 3.0025 (19) 139
O3—H2W⋯O2ii 0.84 2.11 2.8711 (17) 150
O3—H1W⋯O6ii 0.84 2.29 3.000 (2) 142
O3—H1W⋯O1ii 0.84 2.21 2.9475 (18) 147
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recent advances in the coordination chemistry of manganese have been mainly associated with (i) manganese clusters and the phenomenon of single-molecule magnetism (Christou, 2005) and (ii) its biological importance (Pecoraro, 1992). With its accessible oxidation states ranging from (II) to (V), and a propensity for coordination with N and O donor atoms, manganese exhibits rich redox and structural chemistry in biological systems like the oxygen-evolvingcomplex (OEC) of photosystem II (McEvoy & Brudvig, 2006), superoxide dismutase, catalase, arginase etc. (Yocum & Pecoraro, 1999). We have been interested in inorganic modeling of the active sites of these manganese-containing systems using complexes containing Schiff base and carboxylate ligands. The structural diversity displayed in such complexes has been amply demonstrated in previous reports (Hulme et al., 1997; Zhang & Janiak, 2001; Bermejo et al., 2006). In this paper, we report the crystal structure of a new manganese(III) complex with the Schiff base, m-salen [H2msalen = N,N'-bis(3-methoxysalicylidene)-ethane-1,2-diamine] and 4-hydroxyobenzoate as an ancillary ligand (Figure 1).

The N2O2 donor set of the m-salen ligand holds the manganese(III) ion at the centre of an approximate square plane [Mn(1)-O(1) = 1.8848 (12) Å and Mn(1)-O(2) = 1.8821 (11) Å ;Mn(1)-N(1) = 1.9774 (15) Å and Mn(1)-N(2) = 1.9930 (14) Å]. Jahn-Teller distortion elongate of the axial Mn–Ocarb [Mn(1)-O(4) = 2.1164 (13) Å] and the Mn–Oaq [Mn(1)-O(3) = 2.3257 (12) Å]. H-bonding interactions between the non-coordinated O atom of the carboxylate and the para O-H group of the carboxylate of an adjacent molecule produce chains progressing along a screw (21) axis parallel to the b-axis. Axial H2O ligands and the m-salen ligands of neighboring molecules are involved in multiple H-bond interactions resulting in chains. These two interactions together produce a 2-dimensional sheet structure parallel to the (1 0 3) plane (Figure 2).

Related literature top

For background to the coordination chemistry of manganese, see: Christou (2005); Yocum & Pecoraro (1999); McEvoy & Brudvig (2006); Pecoraro (1992). For the structures of manganese complexes containing Schiff base and carboxylate ligands, see: Bermejo et al. (2006); Hulme et al. (1997); Zhang & Janiak (2001).

Experimental top

To a solution of [Mn(4-OHC6H4CO2)(H2O)2].H2O (1.00 g, 2.61 mmol), and 3-methoxysalicylaldehyde (0.76 g, 5.22 mmol) in methanol (40 ml), ethane-1,2-diamine (0.16 g, 2.61 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Crystals were grown from a DMF solution.

Refinement top

All hydrogen atoms were initially located in the difference map and then were placed in theoretical positions using a riding model. The methyl groups and the O-H groups were allowed to rotate but not to tip. Csp2—H = 0.95 Å, Csp3—H = 0.99 Å, Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP picture (Farrugia, 1997) of the title compound. Displacement ellipsoids have been drawn at the 50% probability level.
[Figure 2] Fig. 2. Mercury capped-stick packing diagram (Macrae et al., 2006) of the title compound showing hydrogen-bonding chains and the 2-dimensional sheet structure.
Aqua{6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}(4-hydroxybenzoato)manganese(III) top
Crystal data top
[Mn(C18H18N2O4)(C7H5O3)(H2O)]F(000) = 1112
Mr = 536.41Dx = 1.449 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 305 reflections
a = 8.5988 (3) Åθ = 9.7–72.7°
b = 13.5524 (5) ŵ = 4.82 mm1
c = 21.1335 (8) ÅT = 100 K
β = 93.280 (2)°Block, red
V = 2458.75 (16) Å30.43 × 0.38 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
4259 independent reflections
Radiation source: fine-focus sealed tube3766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ψ scansθmax = 67.0°, θmin = 3.9°
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.229, Tmax = 0.388k = 1616
26252 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.482P]
where P = (Fo2 + 2Fc2)/3
4259 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Mn(C18H18N2O4)(C7H5O3)(H2O)]V = 2458.75 (16) Å3
Mr = 536.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.5988 (3) ŵ = 4.82 mm1
b = 13.5524 (5) ÅT = 100 K
c = 21.1335 (8) Å0.43 × 0.38 × 0.24 mm
β = 93.280 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4259 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
3766 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.388Rint = 0.033
26252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4259 reflectionsΔρmin = 0.31 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00260 (3)0.572439 (18)0.395095 (12)0.03435 (10)
O10.16793 (14)0.49020 (9)0.42468 (6)0.0441 (3)
O20.00908 (13)0.65071 (8)0.46877 (5)0.0385 (3)
O30.17820 (15)0.46814 (10)0.43826 (6)0.0462 (3)
H1W0.20820.49290.47190.069*
H2W0.13240.41830.45390.069*
O40.13396 (16)0.68020 (10)0.34910 (7)0.0579 (4)
O50.2768 (2)0.61403 (11)0.27687 (9)0.0759 (5)
O60.38532 (16)0.39868 (11)0.49052 (8)0.0605 (4)
O70.11387 (16)0.74947 (10)0.56553 (6)0.0552 (4)
O80.56714 (18)1.04617 (10)0.31546 (7)0.0569 (4)
H80.60431.05920.28050.085*
N10.03465 (18)0.49221 (11)0.31755 (7)0.0437 (4)
N20.18769 (17)0.64264 (11)0.36080 (7)0.0404 (3)
C10.2130 (2)0.40534 (13)0.40135 (9)0.0434 (4)
C20.3325 (2)0.35296 (14)0.43583 (10)0.0504 (5)
C30.3854 (3)0.26389 (16)0.41349 (13)0.0669 (7)
H3A0.46670.22990.43670.080*
C40.3210 (3)0.22341 (17)0.35735 (13)0.0716 (7)
H40.35710.16170.34280.086*
C50.2069 (3)0.27213 (16)0.32360 (12)0.0648 (6)
H50.16400.24420.28520.078*
C60.1502 (2)0.36359 (14)0.34428 (9)0.0486 (5)
C70.0319 (3)0.41113 (14)0.30509 (9)0.0503 (5)
H70.00010.37950.26640.060*
C80.1493 (3)0.53742 (16)0.27184 (9)0.0567 (5)
H8A0.19830.48620.24390.068*
H8B0.09760.58610.24510.068*
C90.2707 (2)0.58766 (16)0.30925 (9)0.0528 (5)
H9A0.33390.63320.28170.063*
H9B0.34100.53810.32680.063*
C100.2353 (2)0.72627 (14)0.37993 (9)0.0438 (4)
H100.32190.75520.35690.053*
C110.1684 (2)0.77993 (13)0.43343 (9)0.0418 (4)
C120.2294 (3)0.87431 (15)0.44637 (11)0.0568 (5)
H120.30830.90180.41840.068*
C130.1765 (3)0.92618 (15)0.49826 (12)0.0620 (6)
H130.21860.98950.50630.074*
C140.0609 (3)0.88696 (15)0.53968 (10)0.0554 (5)
H140.02460.92350.57590.067*
C150.0010 (2)0.79578 (13)0.52835 (9)0.0431 (4)
C160.05175 (19)0.73910 (12)0.47489 (8)0.0363 (4)
C170.5190 (2)0.35790 (19)0.52483 (14)0.0759 (8)
H17A0.49450.29140.53950.114*
H17B0.54770.39990.56140.114*
H17C0.60630.35460.49700.114*
C180.1804 (3)0.8014 (2)0.61902 (12)0.0785 (7)
H18A0.22850.86250.60490.118*
H18B0.25980.76010.64110.118*
H18C0.09880.81730.64790.118*
C190.2422 (2)0.68274 (13)0.31186 (9)0.0416 (4)
C200.33056 (19)0.77892 (12)0.31102 (8)0.0363 (4)
C210.3153 (2)0.84743 (13)0.35946 (8)0.0418 (4)
H210.24800.83340.39240.050*
C220.3962 (2)0.93532 (14)0.36026 (9)0.0443 (4)
H220.38630.98050.39420.053*
C230.4923 (2)0.95794 (13)0.31152 (9)0.0404 (4)
C240.5079 (2)0.89109 (13)0.26270 (8)0.0408 (4)
H240.57280.90610.22910.049*
C250.4281 (2)0.80217 (13)0.26320 (8)0.0392 (4)
H250.44070.75610.23000.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03304 (16)0.03382 (16)0.03536 (16)0.00183 (11)0.00532 (11)0.00038 (11)
O10.0386 (7)0.0387 (7)0.0539 (7)0.0051 (5)0.0062 (6)0.0046 (6)
O20.0397 (6)0.0372 (6)0.0374 (6)0.0035 (5)0.0080 (5)0.0011 (5)
O30.0461 (7)0.0452 (7)0.0467 (7)0.0033 (6)0.0027 (6)0.0103 (6)
O40.0593 (9)0.0451 (7)0.0719 (9)0.0112 (6)0.0266 (7)0.0016 (7)
O50.0862 (12)0.0505 (9)0.0951 (12)0.0120 (8)0.0399 (10)0.0203 (9)
O60.0405 (8)0.0569 (8)0.0830 (11)0.0106 (6)0.0075 (7)0.0137 (8)
O70.0569 (8)0.0565 (8)0.0497 (7)0.0026 (7)0.0175 (6)0.0100 (6)
O80.0603 (9)0.0460 (7)0.0651 (9)0.0143 (7)0.0111 (7)0.0042 (7)
N10.0502 (9)0.0412 (8)0.0392 (8)0.0086 (7)0.0021 (7)0.0021 (7)
N20.0379 (8)0.0449 (9)0.0371 (7)0.0047 (6)0.0085 (6)0.0066 (6)
C10.0378 (9)0.0355 (9)0.0581 (11)0.0001 (7)0.0132 (8)0.0047 (8)
C20.0412 (10)0.0435 (10)0.0679 (13)0.0014 (8)0.0146 (9)0.0104 (9)
C30.0585 (13)0.0509 (12)0.0944 (18)0.0176 (10)0.0311 (13)0.0254 (13)
C40.0944 (18)0.0417 (12)0.0826 (17)0.0110 (12)0.0400 (15)0.0024 (12)
C50.0864 (17)0.0414 (11)0.0694 (14)0.0010 (11)0.0304 (13)0.0017 (10)
C60.0570 (12)0.0366 (9)0.0541 (11)0.0043 (8)0.0186 (9)0.0033 (8)
C70.0621 (13)0.0444 (11)0.0449 (10)0.0118 (9)0.0073 (9)0.0065 (8)
C80.0667 (14)0.0609 (12)0.0401 (10)0.0046 (11)0.0168 (10)0.0015 (9)
C90.0493 (12)0.0608 (12)0.0458 (10)0.0047 (9)0.0201 (9)0.0019 (9)
C100.0368 (9)0.0456 (10)0.0481 (10)0.0038 (8)0.0059 (8)0.0119 (8)
C110.0382 (9)0.0382 (9)0.0487 (10)0.0010 (7)0.0006 (8)0.0060 (8)
C120.0538 (12)0.0460 (11)0.0704 (14)0.0108 (9)0.0013 (10)0.0096 (10)
C130.0704 (15)0.0392 (11)0.0774 (15)0.0079 (10)0.0126 (12)0.0028 (10)
C140.0654 (13)0.0431 (11)0.0581 (12)0.0072 (10)0.0063 (10)0.0081 (10)
C150.0423 (10)0.0422 (10)0.0448 (10)0.0070 (8)0.0008 (8)0.0009 (8)
C160.0333 (8)0.0353 (9)0.0404 (9)0.0037 (7)0.0031 (7)0.0027 (7)
C170.0381 (12)0.0765 (16)0.112 (2)0.0059 (10)0.0078 (12)0.0371 (15)
C180.0805 (17)0.0893 (18)0.0625 (14)0.0134 (14)0.0233 (13)0.0233 (13)
C190.0412 (10)0.0394 (9)0.0440 (10)0.0015 (8)0.0007 (8)0.0025 (8)
C200.0319 (8)0.0391 (9)0.0374 (9)0.0023 (7)0.0010 (7)0.0045 (7)
C210.0402 (10)0.0481 (10)0.0374 (9)0.0012 (8)0.0049 (7)0.0027 (8)
C220.0486 (11)0.0456 (10)0.0387 (9)0.0015 (8)0.0012 (8)0.0048 (8)
C230.0354 (9)0.0396 (9)0.0455 (10)0.0014 (7)0.0028 (8)0.0044 (8)
C240.0346 (9)0.0463 (10)0.0420 (9)0.0024 (8)0.0055 (7)0.0066 (8)
C250.0383 (9)0.0406 (9)0.0386 (9)0.0033 (7)0.0031 (7)0.0004 (7)
Geometric parameters (Å, º) top
Mn1—O21.8821 (11)C8—C91.507 (3)
Mn1—O11.8848 (12)C8—H8A0.9900
Mn1—N11.9774 (15)C8—H8B0.9900
Mn1—N21.9930 (14)C9—H9A0.9900
Mn1—O42.1164 (13)C9—H9B0.9900
Mn1—O32.3257 (12)C10—C111.437 (3)
O1—C11.318 (2)C10—H100.9500
O2—C161.316 (2)C11—C161.407 (2)
O3—H1W0.8400C11—C121.415 (3)
O3—H2W0.8401C12—C131.359 (3)
O4—C191.253 (2)C12—H120.9500
O5—C191.236 (2)C13—C141.392 (3)
O6—C21.366 (3)C13—H130.9500
O6—C171.435 (2)C14—C151.372 (3)
O7—C151.366 (2)C14—H140.9500
O7—C181.424 (2)C15—C161.419 (2)
O8—C231.358 (2)C17—H17A0.9800
O8—H80.8400C17—H17B0.9800
N1—C71.274 (2)C17—H17C0.9800
N1—C81.474 (2)C18—H18A0.9800
N2—C101.278 (2)C18—H18B0.9800
N2—C91.470 (2)C18—H18C0.9800
C1—C61.411 (3)C19—C201.509 (2)
C1—C21.416 (3)C20—C251.386 (2)
C2—C31.383 (3)C20—C211.394 (2)
C3—C41.393 (4)C21—C221.379 (3)
C3—H3A0.9500C21—H210.9500
C4—C51.352 (4)C22—C231.391 (3)
C4—H40.9500C22—H220.9500
C5—C61.410 (3)C23—C241.385 (3)
C5—H50.9500C24—C251.387 (3)
C6—C71.428 (3)C24—H240.9500
C7—H70.9500C25—H250.9500
O2—Mn1—O194.17 (5)C8—C9—H9A110.3
O2—Mn1—N1172.37 (6)N2—C9—H9B110.3
O1—Mn1—N191.90 (6)C8—C9—H9B110.3
O2—Mn1—N290.95 (6)H9A—C9—H9B108.5
O1—Mn1—N2172.26 (6)N2—C10—C11125.20 (16)
N1—Mn1—N282.56 (6)N2—C10—H10117.4
O2—Mn1—O489.99 (5)C11—C10—H10117.4
O1—Mn1—O498.52 (6)C16—C11—C12119.61 (18)
N1—Mn1—O493.68 (6)C16—C11—C10122.03 (16)
N2—Mn1—O487.26 (6)C12—C11—C10118.25 (17)
O2—Mn1—O390.40 (5)C13—C12—C11120.9 (2)
O1—Mn1—O391.09 (5)C13—C12—H12119.6
N1—Mn1—O384.87 (6)C11—C12—H12119.6
N2—Mn1—O383.08 (5)C12—C13—C14120.26 (19)
O4—Mn1—O3170.33 (5)C12—C13—H13119.9
C1—O1—Mn1128.61 (12)C14—C13—H13119.9
C16—O2—Mn1126.94 (10)C15—C14—C13120.29 (19)
Mn1—O3—H1W109.5C15—C14—H14119.9
Mn1—O3—H2W109.5C13—C14—H14119.9
H1W—O3—H2W98.5O7—C15—C14125.68 (17)
C19—O4—Mn1137.94 (13)O7—C15—C16113.16 (15)
C2—O6—C17118.09 (18)C14—C15—C16121.16 (18)
C15—O7—C18118.02 (17)O2—C16—C11124.73 (15)
C23—O8—H8109.5O2—C16—C15117.41 (15)
C7—N1—C8120.99 (16)C11—C16—C15117.83 (16)
C7—N1—Mn1126.33 (14)O6—C17—H17A109.5
C8—N1—Mn1112.66 (12)O6—C17—H17B109.5
C10—N2—C9122.20 (16)H17A—C17—H17B109.5
C10—N2—Mn1125.41 (12)O6—C17—H17C109.5
C9—N2—Mn1112.39 (12)H17A—C17—H17C109.5
O1—C1—C6124.27 (17)H17B—C17—H17C109.5
O1—C1—C2117.72 (18)O7—C18—H18A109.5
C6—C1—C2118.01 (18)O7—C18—H18B109.5
O6—C2—C3125.8 (2)H18A—C18—H18B109.5
O6—C2—C1113.84 (17)O7—C18—H18C109.5
C3—C2—C1120.4 (2)H18A—C18—H18C109.5
C2—C3—C4120.8 (2)H18B—C18—H18C109.5
C2—C3—H3A119.6O5—C19—O4124.60 (18)
C4—C3—H3A119.6O5—C19—C20120.33 (16)
C5—C4—C3119.9 (2)O4—C19—C20115.06 (16)
C5—C4—H4120.0C25—C20—C21118.07 (16)
C3—C4—H4120.0C25—C20—C19122.08 (16)
C4—C5—C6121.3 (2)C21—C20—C19119.86 (15)
C4—C5—H5119.4C22—C21—C20121.03 (16)
C6—C5—H5119.4C22—C21—H21119.5
C5—C6—C1119.7 (2)C20—C21—H21119.5
C5—C6—C7117.6 (2)C21—C22—C23120.13 (17)
C1—C6—C7122.67 (17)C21—C22—H22119.9
N1—C7—C6125.66 (18)C23—C22—H22119.9
N1—C7—H7117.2O8—C23—C24123.75 (16)
C6—C7—H7117.2O8—C23—C22116.63 (17)
N1—C8—C9107.53 (16)C24—C23—C22119.62 (16)
N1—C8—H8A110.2C23—C24—C25119.58 (16)
C9—C8—H8A110.2C23—C24—H24120.2
N1—C8—H8B110.2C25—C24—H24120.2
C9—C8—H8B110.2C20—C25—C24121.55 (16)
H8A—C8—H8B108.5C20—C25—H25119.2
N2—C9—C8107.24 (16)C24—C25—H25119.2
N2—C9—H9A110.3
O2—Mn1—O1—C1167.31 (14)Mn1—N1—C7—C61.8 (3)
N1—Mn1—O1—C18.07 (15)C5—C6—C7—N1177.95 (19)
O4—Mn1—O1—C1102.08 (15)C1—C6—C7—N13.2 (3)
O3—Mn1—O1—C176.83 (14)C7—N1—C8—C9145.79 (18)
O1—Mn1—O2—C16162.00 (13)Mn1—N1—C8—C935.67 (19)
N2—Mn1—O2—C1623.80 (14)C10—N2—C9—C8143.81 (18)
O4—Mn1—O2—C1663.46 (14)Mn1—N2—C9—C835.78 (19)
O3—Mn1—O2—C16106.88 (13)N1—C8—C9—N245.1 (2)
O2—Mn1—O4—C19140.4 (2)C9—N2—C10—C11174.25 (17)
O1—Mn1—O4—C1946.2 (2)Mn1—N2—C10—C116.2 (3)
N1—Mn1—O4—C1946.3 (2)N2—C10—C11—C167.3 (3)
N2—Mn1—O4—C19128.6 (2)N2—C10—C11—C12176.57 (18)
O1—Mn1—N1—C76.06 (17)C16—C11—C12—C130.2 (3)
N2—Mn1—N1—C7168.52 (17)C10—C11—C12—C13176.4 (2)
O4—Mn1—N1—C7104.73 (16)C11—C12—C13—C140.0 (3)
O3—Mn1—N1—C784.86 (16)C12—C13—C14—C150.2 (3)
O1—Mn1—N1—C8172.39 (13)C18—O7—C15—C143.6 (3)
N2—Mn1—N1—C813.03 (13)C18—O7—C15—C16177.24 (18)
O4—Mn1—N1—C873.72 (13)C13—C14—C15—O7179.66 (19)
O3—Mn1—N1—C896.69 (13)C13—C14—C15—C160.6 (3)
O2—Mn1—N2—C1017.80 (15)Mn1—O2—C16—C1118.7 (2)
N1—Mn1—N2—C10166.21 (16)Mn1—O2—C16—C15163.44 (12)
O4—Mn1—N2—C1072.14 (15)C12—C11—C16—O2177.39 (17)
O3—Mn1—N2—C10108.09 (15)C10—C11—C16—O21.3 (3)
O2—Mn1—N2—C9162.63 (13)C12—C11—C16—C150.5 (3)
N1—Mn1—N2—C913.36 (13)C10—C11—C16—C15176.59 (16)
O4—Mn1—N2—C9107.43 (13)O7—C15—C16—O21.9 (2)
O3—Mn1—N2—C972.34 (13)C14—C15—C16—O2177.34 (17)
Mn1—O1—C1—C65.9 (3)O7—C15—C16—C11179.91 (15)
Mn1—O1—C1—C2174.29 (12)C14—C15—C16—C110.7 (3)
C17—O6—C2—C37.6 (3)Mn1—O4—C19—O521.3 (3)
C17—O6—C2—C1172.48 (17)Mn1—O4—C19—C20159.68 (14)
O1—C1—C2—O60.6 (2)O5—C19—C20—C2514.1 (3)
C6—C1—C2—O6179.62 (16)O4—C19—C20—C25164.99 (17)
O1—C1—C2—C3179.53 (17)O5—C19—C20—C21165.88 (18)
C6—C1—C2—C30.3 (3)O4—C19—C20—C2115.1 (2)
O6—C2—C3—C4178.98 (19)C25—C20—C21—C220.8 (3)
C1—C2—C3—C40.9 (3)C19—C20—C21—C22179.17 (17)
C2—C3—C4—C51.0 (3)C20—C21—C22—C231.5 (3)
C3—C4—C5—C60.4 (3)C21—C22—C23—O8179.52 (17)
C4—C5—C6—C10.2 (3)C21—C22—C23—C240.9 (3)
C4—C5—C6—C7178.7 (2)O8—C23—C24—C25179.18 (16)
O1—C1—C6—C5179.94 (17)C22—C23—C24—C250.4 (3)
C2—C1—C6—C50.2 (3)C21—C20—C25—C240.5 (3)
O1—C1—C6—C71.3 (3)C19—C20—C25—C24179.53 (15)
C2—C1—C6—C7178.54 (17)C23—C24—C25—C201.1 (3)
C8—N1—C7—C6176.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O5i0.841.792.599 (2)161
O3—H2W···O7ii0.842.323.0025 (19)139
O3—H2W···O2ii0.842.112.8711 (17)150
O3—H1W···O6ii0.842.293.000 (2)142
O3—H1W···O1ii0.842.212.9475 (18)147
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C18H18N2O4)(C7H5O3)(H2O)]
Mr536.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.5988 (3), 13.5524 (5), 21.1335 (8)
β (°) 93.280 (2)
V3)2458.75 (16)
Z4
Radiation typeCu Kα
µ (mm1)4.82
Crystal size (mm)0.43 × 0.38 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.229, 0.388
No. of measured, independent and
observed [I > 2σ(I)] reflections
26252, 4259, 3766
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.04
No. of reflections4259
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O5i0.841.792.599 (2)160.5
O3—H2W···O7ii0.842.323.0025 (19)138.9
O3—H2W···O2ii0.842.112.8711 (17)149.7
O3—H1W···O6ii0.842.293.000 (2)142.4
O3—H1W···O1ii0.842.212.9475 (18)147.3
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

We acknowledge the generosity of the Principal of SN College, Varkala, Kerala, for providing the facilities of the college for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationBermejo, M. R., Fernández, M. I., González-Noya, A. M., Maneiro, M., Pedrido, R., Rodríguez, M. J., García-Monteagudo, J. C. & Donnadieu, B. (2006). J. Inorg. Biochem. 9, 1470–1478.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristou, G. (2005). Polyhedron, 24, 2065–2075.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcEvoy, J. P. & Brudvig, G. W. (2006). Chem. Rev. 106, 4455–4483.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPecoraro, V. L. (1992). Editor. Manganese Redox Enzymes. New York: Verlag-Chemie.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYocum, C. F. & Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1110-m1111
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds