organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-Bromo-3-(2,6-di­chloro­benzyl­­idene)indolin-2-one

aDepartment of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
*Correspondence e-mail: hzhang@smu.edu

(Received 13 August 2009; accepted 17 August 2009; online 22 August 2009)

The title compound, C15H8BrCl2NO, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the two aromatic rings are 62.74 (9) and 63.50 (6)° in the two independent molecules. In the crystal, the mol­ecules are connected by N—H⋯O hydrogen bonds, forming two centrosymmetric dimers.

Related literature

For the pharmacological properties of 3-substituted indoline-2-ones, see: Andreani et al. (2006[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922-6924.]); Johnson et al. (2005[Johnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538-548.]); Sun et al. (2003[Sun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116-1119.]). a series of 3-substituted indoline-2-one derivatives have been synthesized in our laboratory and their neuroprotective activities have been tested, see: Ankati et al., (2009[Ankati, H., Akubathini, S. K., Kamila, S., Mukherjee, C., D'Mello, S. R. & Biehl, E. R. (2009). Open Org. Chem. J. 3, 1-10.]); Balderamos et al. (2008[Balderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). Exp. Biol. Med. 233, 1395-1402.]). For the structures of some of the derivatives, see: Zhang et al. (2008[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.], 2009a[Zhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009a). Acta Cryst. E65, o8.],b[Zhang, H., Akubathini, S. K., Ankati, H. & Biehl, E. (2009b). Acta Cryst. E65, o363.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8BrCl2NO

  • Mr = 369.03

  • Triclinic, [P \overline 1]

  • a = 8.1018 (4) Å

  • b = 13.5726 (7) Å

  • c = 14.4904 (7) Å

  • α = 63.575 (1)°

  • β = 82.956 (1)°

  • γ = 80.139 (1)°

  • V = 1403.89 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 296 K

  • 0.32 × 0.21 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.416, Tmax = 0.636

  • 17925 measured reflections

  • 6832 independent reflections

  • 5263 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.05

  • 6832 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯O22i 0.86 2.03 2.848 (3) 160
N1—H1⋯O2ii 0.86 2.09 2.924 (3) 163
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

3-Substituted indoline-2-ones have well recognized pharmacological properties, including antitumor properties (Andreani et al., 2006), as well as the function as receptor tyrosine kinase (RTK) inhibitors (Sun et al., 2003) and neuroprotective properties (Johnson et al., 2005). For studying the biological properties a series of 3-substituted indoline-2-one derivatives have been synthesized in our lab and their neuroprotective activities have been tested (Ankati et al., 2009, Balderamos et al. 2008). As a part of our research on the relationship between the biological activities and solid structures a couple of crystal structures of the derivatives have been carried out (Zhang et al., 2008, 2009a, 2009b). The crystal structure confirmed the E configuration of the compound. The title compound consists of an oxindolyl and a dichlorophenyl unit (Fig 1). The dihedral angles between the two aromatic rings are 62.74 (9) and 63.50 (6)°, respectively, for the two independent molecules. The crystal structure revealed that the intermolecular H-bonds (Table 1), linking the two inverted molecules, form an octa cyclic membered ring and a dimer (Fig 2) is constructed.

Related literature top

For the pharmacological properties of 3-substituted indoline-2-ones, see: Andreani et al. (2006); Johnson et al. (2005); Sun et al. (2003). a series of 3-substituted indoline-2-one derivatives have been synthesized in our laboratory and their neuroprotective activities have been tested, see: Ankati et al., (2009); Balderamos et al. (2008). For the structures of some of the derivatives, see: Zhang et al. (2008, 2009a,b).

Experimental top

2,6-Dichlorobenzaldehyde (1 mmol) was added to a mixture of 5-bromo-2-oxindole (1 mmol) and piperidene (0.1 mmol) in ethanol (4 ml) were placed in a microwave test tube. The tube was then capped and charged into a CEM microwave instrument. The mixture was irradiated with 250 psi pressure and at a temperature of 140°C for 10 minutes. Then the reaction mixture was left overnight at room temperature. The obtained solid was collected by filtration and washed with cold ethanol. The crude product was purified by recrystallization from ethanol and the yellow colored single-crystal sample was obtained.

Refinement top

All H atoms were placed in calculated positions and included in the final cycles of refinement using a riding model, with distances N–H = 0.86 Å and C–H = 0.93 Å, and displacement parameters Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : A view of one of the independent molecules with displacement ellipsoids drawn at the 40% probability level. H atoms are presented as open circles with arbitrary radii. Atoms of another independent molecule were labeled as N21 H21 C22 O22 through C36 Cl36.
[Figure 2] Fig. 2. : A unit cell packing view of the title compound. Dash lines indicate hydrogen bonds. For clarity, H atoms are presented as open circles with arbitrary radii.
(E)-5-Bromo-3-(2,6-dichlorobenzylidene)indolin-2-one top
Crystal data top
C15H8BrCl2NOZ = 4
Mr = 369.03F(000) = 728
Triclinic, P1Dx = 1.746 Mg m3
a = 8.1018 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5726 (7) ÅCell parameters from 8432 reflections
c = 14.4904 (7) Åθ = 2.6–28.2°
α = 63.575 (1)°µ = 3.30 mm1
β = 82.956 (1)°T = 296 K
γ = 80.139 (1)°Rods, yellow
V = 1403.89 (12) Å30.32 × 0.21 × 0.15 mm
Data collection top
Bruker SMART APEX
diffractometer
6832 independent reflections
Radiation source: fine-focus sealed tube5263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 1.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.416, Tmax = 0.636l = 1919
17925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.697P]
where P = (Fo2 + 2Fc2)/3
6832 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C15H8BrCl2NOγ = 80.139 (1)°
Mr = 369.03V = 1403.89 (12) Å3
Triclinic, P1Z = 4
a = 8.1018 (4) ÅMo Kα radiation
b = 13.5726 (7) ŵ = 3.30 mm1
c = 14.4904 (7) ÅT = 296 K
α = 63.575 (1)°0.32 × 0.21 × 0.15 mm
β = 82.956 (1)°
Data collection top
Bruker SMART APEX
diffractometer
6832 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5263 reflections with I > 2σ(I)
Tmin = 0.416, Tmax = 0.636Rint = 0.017
17925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.71 e Å3
6832 reflectionsΔρmin = 0.76 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6336 (3)0.42436 (16)0.61350 (15)0.0430 (5)
H10.61580.40890.56440.052*
C20.5806 (3)0.5237 (2)0.61601 (18)0.0405 (5)
O20.4970 (3)0.60288 (15)0.55199 (14)0.0556 (5)
C30.6430 (3)0.51560 (18)0.71349 (17)0.0360 (5)
C40.8056 (3)0.34403 (19)0.85758 (18)0.0385 (5)
H40.81250.37730.90070.046*
Br50.96940 (5)0.15148 (2)1.01371 (3)0.07361 (13)
C50.8708 (3)0.2340 (2)0.88452 (19)0.0426 (5)
C60.8650 (4)0.1838 (2)0.8206 (2)0.0500 (6)
H60.91280.11040.84020.060*
C70.7889 (3)0.2417 (2)0.7280 (2)0.0479 (6)
H70.78350.20820.68490.057*
C80.7211 (3)0.35044 (19)0.70100 (18)0.0376 (5)
C90.7300 (3)0.40275 (18)0.76408 (17)0.0349 (5)
C100.6107 (3)0.60116 (19)0.73755 (18)0.0395 (5)
H100.54680.66370.69140.047*
C110.6620 (3)0.61086 (17)0.82716 (17)0.0353 (5)
C120.8280 (3)0.60502 (19)0.84706 (18)0.0397 (5)
Cl120.98958 (9)0.57914 (6)0.76720 (6)0.05545 (17)
C130.8707 (4)0.6252 (2)0.9265 (2)0.0536 (7)
H130.98280.62140.93740.064*
C140.7468 (4)0.6506 (3)0.9884 (2)0.0607 (8)
H140.77500.66351.04200.073*
C150.5811 (4)0.6572 (2)0.9723 (2)0.0543 (7)
H150.49680.67441.01450.065*
C160.5418 (3)0.6379 (2)0.89234 (19)0.0428 (5)
Cl160.33175 (9)0.64656 (8)0.87280 (6)0.0684 (2)
N210.8680 (3)0.62560 (16)0.40279 (16)0.0434 (5)
H210.89250.55980.40650.052*
C220.9185 (3)0.65805 (19)0.46956 (18)0.0419 (5)
O221.0070 (3)0.60169 (14)0.54175 (14)0.0579 (5)
C230.8454 (3)0.77842 (18)0.43524 (18)0.0390 (5)
C240.6607 (3)0.9048 (2)0.27961 (19)0.0430 (5)
H240.64850.96860.29000.052*
Br250.44460 (5)1.03332 (3)0.11691 (2)0.07282 (12)
C250.5849 (3)0.9036 (2)0.19976 (19)0.0474 (6)
C260.6033 (4)0.8103 (2)0.1816 (2)0.0521 (6)
H260.55260.81270.12630.063*
C270.6976 (3)0.7130 (2)0.2461 (2)0.0479 (6)
H270.71070.64970.23490.058*
C280.7708 (3)0.71278 (19)0.32688 (18)0.0395 (5)
C290.7555 (3)0.80790 (19)0.34385 (18)0.0384 (5)
C300.8691 (3)0.83197 (19)0.48988 (19)0.0422 (5)
H300.92330.78920.55100.051*
C310.8202 (3)0.95013 (19)0.46537 (18)0.0400 (5)
C320.8786 (3)1.0363 (2)0.37702 (19)0.0431 (6)
Cl321.01330 (10)1.00841 (6)0.28626 (5)0.05811 (18)
C330.8399 (4)1.1464 (2)0.3591 (2)0.0504 (6)
H330.88071.20190.29910.060*
C340.7402 (4)1.1731 (2)0.4310 (3)0.0565 (7)
H340.71341.24700.41930.068*
C350.6804 (4)1.0910 (2)0.5199 (2)0.0547 (7)
H350.61241.10900.56820.066*
C360.7223 (3)0.9814 (2)0.5366 (2)0.0448 (6)
Cl360.65098 (11)0.87932 (6)0.65137 (6)0.0638 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0579 (13)0.0407 (11)0.0374 (10)0.0041 (9)0.0129 (9)0.0243 (9)
C20.0470 (13)0.0406 (12)0.0382 (12)0.0014 (10)0.0097 (10)0.0217 (10)
O20.0774 (13)0.0466 (10)0.0478 (10)0.0152 (9)0.0307 (9)0.0262 (9)
C30.0416 (12)0.0362 (11)0.0320 (11)0.0009 (9)0.0080 (9)0.0162 (9)
C40.0453 (13)0.0368 (12)0.0361 (12)0.0017 (10)0.0087 (10)0.0179 (10)
Br50.1111 (3)0.04428 (16)0.0599 (2)0.01126 (16)0.04425 (19)0.01523 (14)
C50.0495 (14)0.0363 (12)0.0382 (12)0.0011 (10)0.0125 (10)0.0125 (10)
C60.0612 (16)0.0339 (12)0.0545 (15)0.0061 (11)0.0119 (13)0.0208 (11)
C70.0598 (16)0.0417 (13)0.0503 (15)0.0029 (11)0.0093 (12)0.0290 (12)
C80.0423 (12)0.0374 (11)0.0356 (11)0.0015 (9)0.0047 (9)0.0188 (10)
C90.0381 (12)0.0322 (11)0.0364 (11)0.0014 (9)0.0050 (9)0.0170 (9)
C100.0478 (13)0.0337 (11)0.0379 (12)0.0021 (10)0.0131 (10)0.0161 (10)
C110.0459 (13)0.0264 (10)0.0342 (11)0.0025 (9)0.0085 (9)0.0130 (9)
C120.0464 (13)0.0366 (12)0.0374 (12)0.0046 (10)0.0031 (10)0.0171 (10)
Cl120.0489 (4)0.0663 (4)0.0600 (4)0.0104 (3)0.0043 (3)0.0361 (4)
C130.0518 (15)0.0670 (18)0.0520 (15)0.0146 (13)0.0099 (12)0.0306 (14)
C140.074 (2)0.076 (2)0.0509 (16)0.0181 (16)0.0059 (14)0.0415 (16)
C150.0632 (18)0.0613 (17)0.0472 (15)0.0045 (14)0.0003 (13)0.0334 (14)
C160.0465 (13)0.0397 (12)0.0430 (13)0.0008 (10)0.0082 (10)0.0188 (11)
Cl160.0448 (4)0.0928 (6)0.0682 (5)0.0046 (4)0.0105 (3)0.0384 (4)
N210.0603 (13)0.0286 (9)0.0432 (11)0.0016 (9)0.0053 (9)0.0194 (8)
C220.0593 (15)0.0288 (11)0.0356 (12)0.0029 (10)0.0043 (11)0.0149 (9)
O220.0911 (15)0.0341 (9)0.0474 (10)0.0165 (9)0.0246 (10)0.0201 (8)
C230.0516 (14)0.0281 (10)0.0367 (12)0.0038 (10)0.0070 (10)0.0155 (9)
C240.0531 (14)0.0336 (12)0.0420 (13)0.0012 (10)0.0065 (11)0.0176 (10)
Br250.0913 (3)0.0635 (2)0.05517 (19)0.02261 (17)0.03042 (17)0.02304 (15)
C250.0557 (15)0.0437 (13)0.0381 (13)0.0037 (11)0.0087 (11)0.0156 (11)
C260.0622 (17)0.0571 (16)0.0437 (14)0.0032 (13)0.0117 (12)0.0272 (13)
C270.0614 (16)0.0445 (14)0.0469 (14)0.0043 (12)0.0048 (12)0.0283 (12)
C280.0472 (13)0.0340 (11)0.0376 (12)0.0019 (10)0.0003 (10)0.0177 (10)
C290.0479 (13)0.0328 (11)0.0353 (11)0.0007 (10)0.0034 (10)0.0170 (9)
C300.0563 (15)0.0310 (11)0.0379 (12)0.0046 (10)0.0117 (11)0.0150 (10)
C310.0514 (14)0.0311 (11)0.0407 (12)0.0032 (10)0.0158 (10)0.0182 (10)
C320.0559 (15)0.0360 (12)0.0414 (13)0.0028 (11)0.0169 (11)0.0198 (10)
Cl320.0826 (5)0.0496 (4)0.0426 (3)0.0062 (3)0.0018 (3)0.0216 (3)
C330.0662 (17)0.0316 (12)0.0511 (15)0.0004 (11)0.0242 (13)0.0129 (11)
C340.0621 (17)0.0323 (12)0.080 (2)0.0102 (12)0.0234 (15)0.0300 (14)
C350.0555 (16)0.0471 (15)0.0724 (19)0.0055 (12)0.0095 (14)0.0382 (15)
C360.0538 (15)0.0372 (12)0.0480 (14)0.0016 (11)0.0095 (11)0.0226 (11)
Cl360.0846 (5)0.0547 (4)0.0569 (4)0.0150 (4)0.0079 (4)0.0293 (3)
Geometric parameters (Å, º) top
N1—C21.358 (3)N21—C221.355 (3)
N1—C81.400 (3)N21—C281.402 (3)
N1—H10.8600N21—H210.8600
C2—O21.222 (3)C22—O221.216 (3)
C2—C31.511 (3)C22—C231.512 (3)
C3—C101.331 (3)C23—C301.338 (3)
C3—C91.462 (3)C23—C291.452 (3)
C4—C91.386 (3)C24—C251.382 (4)
C4—C51.387 (3)C24—C291.387 (3)
C4—H40.9300C24—H240.9300
Br5—C51.895 (2)Br25—C251.898 (3)
C5—C61.381 (4)C25—C261.384 (4)
C6—C71.377 (4)C26—C271.390 (4)
C6—H60.9300C26—H260.9300
C7—C81.376 (3)C27—C281.374 (3)
C7—H70.9300C27—H270.9300
C8—C91.399 (3)C28—C291.401 (3)
C10—C111.476 (3)C30—C311.471 (3)
C10—H100.9300C30—H300.9300
C11—C161.392 (3)C31—C321.392 (4)
C11—C121.392 (3)C31—C361.396 (3)
C12—C131.389 (3)C32—C331.383 (3)
C12—Cl121.734 (2)C32—Cl321.736 (3)
C13—C141.367 (4)C33—C341.377 (4)
C13—H130.9300C33—H330.9300
C14—C151.372 (4)C34—C351.375 (4)
C14—H140.9300C34—H340.9300
C15—C161.378 (4)C35—C361.383 (4)
C15—H150.9300C35—H350.9300
C16—Cl161.735 (3)C36—Cl361.734 (3)
C2—N1—C8111.37 (19)C22—N21—C28111.50 (19)
C2—N1—H1124.3C22—N21—H21124.2
C8—N1—H1124.3C28—N21—H21124.2
O2—C2—N1126.1 (2)O22—C22—N21126.6 (2)
O2—C2—C3127.3 (2)O22—C22—C23127.0 (2)
N1—C2—C3106.56 (19)N21—C22—C23106.4 (2)
C10—C3—C9134.0 (2)C30—C23—C29134.6 (2)
C10—C3—C2120.7 (2)C30—C23—C22119.8 (2)
C9—C3—C2105.30 (18)C29—C23—C22105.55 (19)
C9—C4—C5117.6 (2)C25—C24—C29118.0 (2)
C9—C4—H4121.2C25—C24—H24121.0
C5—C4—H4121.2C29—C24—H24121.0
C6—C5—C4122.1 (2)C24—C25—C26122.2 (2)
C6—C5—Br5119.79 (18)C24—C25—Br25117.97 (19)
C4—C5—Br5118.14 (18)C26—C25—Br25119.8 (2)
C7—C6—C5120.4 (2)C25—C26—C27119.9 (2)
C7—C6—H6119.8C25—C26—H26120.0
C5—C6—H6119.8C27—C26—H26120.0
C8—C7—C6118.2 (2)C28—C27—C26118.3 (2)
C8—C7—H7120.9C28—C27—H27120.8
C6—C7—H7120.9C26—C27—H27120.8
C7—C8—C9121.8 (2)C27—C28—C29121.8 (2)
C7—C8—N1128.7 (2)C27—C28—N21129.0 (2)
C9—C8—N1109.52 (19)C29—C28—N21109.2 (2)
C4—C9—C8119.9 (2)C24—C29—C28119.8 (2)
C4—C9—C3132.8 (2)C24—C29—C23132.8 (2)
C8—C9—C3107.23 (19)C28—C29—C23107.3 (2)
C3—C10—C11129.2 (2)C23—C30—C31128.1 (2)
C3—C10—H10115.4C23—C30—H30115.9
C11—C10—H10115.4C31—C30—H30115.9
C16—C11—C12115.5 (2)C32—C31—C36115.8 (2)
C16—C11—C10120.2 (2)C32—C31—C30123.7 (2)
C12—C11—C10124.0 (2)C36—C31—C30120.3 (2)
C13—C12—C11122.2 (2)C33—C32—C31122.6 (2)
C13—C12—Cl12117.7 (2)C33—C32—Cl32116.8 (2)
C11—C12—Cl12120.01 (18)C31—C32—Cl32120.54 (18)
C14—C13—C12119.5 (3)C34—C33—C32119.4 (3)
C14—C13—H13120.2C34—C33—H33120.3
C12—C13—H13120.2C32—C33—H33120.3
C13—C14—C15120.6 (3)C35—C34—C33120.3 (2)
C13—C14—H14119.7C35—C34—H34119.9
C15—C14—H14119.7C33—C34—H34119.9
C14—C15—C16118.8 (3)C34—C35—C36119.3 (3)
C14—C15—H15120.6C34—C35—H35120.4
C16—C15—H15120.6C36—C35—H35120.4
C15—C16—C11123.3 (2)C35—C36—C31122.6 (3)
C15—C16—Cl16118.3 (2)C35—C36—Cl36118.3 (2)
C11—C16—Cl16118.34 (18)C31—C36—Cl36119.07 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O22i0.862.032.848 (3)160
N1—H1···O2ii0.862.092.924 (3)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H8BrCl2NO
Mr369.03
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1018 (4), 13.5726 (7), 14.4904 (7)
α, β, γ (°)63.575 (1), 82.956 (1), 80.139 (1)
V3)1403.89 (12)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.32 × 0.21 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.416, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
17925, 6832, 5263
Rint0.017
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.05
No. of reflections6832
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.76

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O22i0.862.032.848 (3)159.7
N1—H1···O2ii0.862.092.924 (3)163.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful for grants from the Welch Foundation (N-118) and the DARPA (HR0011–06–1–0032).

References

First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L. & Kunkel, M. W. (2006). J. Med. Chem. 49, 6922–6924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAnkati, H., Akubathini, S. K., Kamila, S., Mukherjee, C., D'Mello, S. R. & Biehl, E. R. (2009). Open Org. Chem. J. 3, 1–10.  CrossRef CAS Google Scholar
First citationBalderamos, M., Ankati, H., Akubathini, S. K., Patel, A. V., Kamila, S., Mukherjee, C., Wang, L., Biehl, E. & D'Mello, S. (2008). Exp. Biol. Med. 233, 1395–1402.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, K., Liu, L., Majdzadeh, N., Chavez, C., Chin, P. C., Morrison, B., Wang, L., Park, J., Chugh, P., Chen, H. & D'Mello, S. R. (2005). J. Neurochem. 93, 538–548.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J. & Tang, C. (2003). J. Med. Chem. 46, 1116–1119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhang, H., Akubathini, S. K., Ankati, H. & Biehl, E. (2009b). Acta Cryst. E65, o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2008). Acta Cryst. E64, o2103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H., Ankati, H., Akubathini, S. K. & Biehl, E. (2009a). Acta Cryst. E65, o8.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds