organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 2-[5-(4-hy­droxy­phen­yl)-3-methyl­sulfanyl-1-benzo­furan-2-yl]acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 21 August 2009; accepted 22 August 2009; online 29 August 2009)

In the title compound, C20H20O4S, the 4-hydroxy­phenyl ring is rotated out of the plane of the benzofuran unit by 32.87 (8)°. The S—Cmeth­yl bond is almost perpendicular to the plane of the benzofuran fragment [77.8 (1)°] and is slightly tilted towards it. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the crystal structure of a similar alkyl 2-[5-(4-hydroxy­phen­yl)-3-methyl­sulfanyl-1-benzofuran-2-yl]acetate derivative, see: Choi et al. (2006[Choi, H. D., Kang, B. W., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5121-o5122.]). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products containing the benzofuran unit, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); von Reuss & König (2004[Reuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113-3118.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O4S

  • Mr = 356.42

  • Monoclinic, C 2/c

  • a = 31.375 (3) Å

  • b = 8.0055 (7) Å

  • c = 15.274 (1) Å

  • β = 107.727 (1)°

  • V = 3654.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.45 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.916, Tmax = 0.981

  • 15589 measured reflections

  • 4158 independent reflections

  • 2474 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.06

  • 4158 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.81 (3) 2.02 (3) 2.829 (3) 171 (3)
C13—H13B⋯O4ii 0.96 2.57 3.325 (3) 135
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hetero aromatic compounds containing the benzofuran skeleton have attracted particular interest in the view of their pharmacological properties (Howlett et al., 1999; Twyman & Allsop, 1999), and these compounds are occurring in natural products (Akgul & Anil, 2003; von Reuss & König, 2004). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of alkyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate analogues (Choi et al., 2006), the crystal structure of the title compound has been determined (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-hydroxyphenyl ring is rotated out of the benzofuran plane, with a dihedral angle of 32.87 (8)°. The crystal packing (Fig. 2) is stabilized by intermolecular O–H···O and C–H···O hydrogen bonds; the first between the H atom of the hydroxy group and the oxygen of the CO unit, with a O4–H4···O3i, the second between the methyl H atom of the methylsulfinyl substituent and the H atom of the hydroxy group, with a C13–H13B···O4ii, respectively (Table 1).

Related literature top

For the crystal structure of a similar alkyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate derivative, see: Choi et al. (2006). For the pharmacological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products containing the benzofuran unit, see: Akgul & Anil (2003); von Reuss & König (2004).

Experimental top

2-[5-(4-Hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetic acid (377 mg, 1.2 mmol) was added to a solution of concentrated sulfuric acid (3 drops) in isopropanol (15 ml), and the mixture was refluxed for 6h, then cooled. The solvent was evaporated and the residue was poured into water. The mixture was extracted with dichloromethane, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (benzene-acetone, 9:1 v/v) to afford the title compound as a colorless solid [yield 91%, m.p. 410-411 K; Rf = 0.51 (benzene-acetone, 9:1 v/v)]. Single crystals suitable for X–ray diffraction were prepared by evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

The hydroxyl H atom was found in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for the aryl, 0.97 Å for the methine and methylene, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. O–H···O and C–H···O interactions (dotted lines) in the title compound. [Symmetry codes: (i) - x + 1/2, y - 1/2, - z + 3/2; (ii) x - 1/2, - y + 3/2, z - 1/2 (iii) -x + 1/2, y + 1/2, - z+ 3/2.]
Isopropyl 2-[5-(4-hydroxyphenyl)-3-methylsulfanyl-1-benzofuran-2-yl]acetate top
Crystal data top
C20H20O4SF(000) = 1504
Mr = 356.42Dx = 1.296 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4594 reflections
a = 31.375 (3) Åθ = 2.6–27.3°
b = 8.0055 (7) ŵ = 0.20 mm1
c = 15.274 (1) ÅT = 173 K
β = 107.727 (1)°Block, colorless
V = 3654.2 (5) Å30.45 × 0.40 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
4158 independent reflections
Radiation source: fine-focus sealed tube2474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.4°
ϕ and ω scansh = 3940
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1010
Tmin = 0.916, Tmax = 0.981l = 1919
15589 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.024P)2 + 3.8686P]
where P = (Fo2 + 2Fc2)/3
4158 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H20O4SV = 3654.2 (5) Å3
Mr = 356.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.375 (3) ŵ = 0.20 mm1
b = 8.0055 (7) ÅT = 173 K
c = 15.274 (1) Å0.45 × 0.40 × 0.10 mm
β = 107.727 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2474 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.981Rint = 0.051
15589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
4158 reflectionsΔρmin = 0.25 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.15080 (2)0.69811 (7)0.43431 (4)0.0571 (2)
O10.11004 (5)0.2623 (2)0.49946 (11)0.0540 (4)
O20.00249 (5)0.6432 (2)0.36507 (10)0.0547 (4)
O30.04570 (5)0.6124 (2)0.51076 (10)0.0588 (5)
O40.43182 (6)0.2543 (2)0.81139 (14)0.0639 (5)
H40.4366 (11)0.204 (4)0.860 (2)0.097 (12)*
C10.14460 (8)0.4954 (3)0.47235 (15)0.0471 (6)
C20.17779 (8)0.3928 (3)0.53678 (14)0.0430 (5)
C30.22327 (7)0.4045 (3)0.58158 (14)0.0427 (5)
H30.23930.49730.57280.051*
C40.24484 (7)0.2758 (3)0.64005 (14)0.0421 (5)
C50.21960 (8)0.1362 (3)0.65124 (16)0.0501 (6)
H50.23410.05030.68990.060*
C60.17442 (8)0.1219 (3)0.60733 (16)0.0531 (6)
H60.15820.02930.61560.064*
C70.15455 (8)0.2522 (3)0.55045 (16)0.0475 (6)
C80.10569 (8)0.4117 (3)0.45225 (16)0.0517 (6)
C90.06007 (8)0.4503 (3)0.39027 (16)0.0571 (6)
H9A0.04270.34800.37750.069*
H9B0.06250.49240.33240.069*
C100.03578 (7)0.5767 (3)0.43027 (15)0.0459 (5)
C110.02201 (8)0.7816 (3)0.39016 (17)0.0596 (7)
H110.02510.76150.45120.072*
C120.06727 (9)0.7810 (4)0.31955 (19)0.0779 (9)
H12A0.06400.79790.25970.117*
H12B0.08520.86920.33270.117*
H12C0.08160.67560.32110.117*
C130.00498 (10)0.9398 (4)0.3919 (2)0.0810 (9)
H13A0.03360.92960.43790.121*
H13B0.01081.03370.40600.121*
H13C0.00920.95610.33280.121*
C140.29366 (7)0.2806 (2)0.68845 (14)0.0412 (5)
C150.31181 (8)0.2046 (3)0.77431 (15)0.0482 (6)
H150.29270.15830.80370.058*
C160.35724 (8)0.1966 (3)0.81618 (15)0.0489 (6)
H160.36840.14440.87300.059*
C170.38628 (8)0.2652 (3)0.77459 (15)0.0462 (5)
C180.36918 (8)0.3480 (3)0.69133 (15)0.0472 (5)
H180.38850.39920.66400.057*
C190.32372 (7)0.3543 (2)0.64927 (14)0.0429 (5)
H190.31280.40910.59320.051*
C200.18438 (10)0.6628 (3)0.3595 (2)0.0753 (8)
H20A0.21320.62100.39470.113*
H20B0.18800.76590.33060.113*
H20C0.16990.58250.31340.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0746 (5)0.0372 (3)0.0542 (4)0.0154 (3)0.0118 (3)0.0026 (3)
O10.0501 (10)0.0527 (10)0.0582 (10)0.0071 (8)0.0151 (8)0.0052 (8)
O20.0574 (10)0.0634 (10)0.0371 (8)0.0202 (8)0.0051 (7)0.0031 (7)
O30.0536 (10)0.0758 (12)0.0392 (9)0.0075 (9)0.0023 (8)0.0064 (8)
O40.0525 (11)0.0710 (12)0.0578 (12)0.0048 (9)0.0013 (9)0.0086 (10)
C10.0551 (15)0.0395 (12)0.0441 (13)0.0103 (11)0.0113 (11)0.0003 (10)
C20.0521 (14)0.0363 (11)0.0416 (12)0.0091 (10)0.0157 (10)0.0003 (9)
C30.0533 (14)0.0339 (11)0.0420 (12)0.0062 (10)0.0162 (11)0.0003 (9)
C40.0509 (13)0.0382 (11)0.0396 (12)0.0093 (10)0.0176 (10)0.0027 (9)
C50.0528 (15)0.0460 (13)0.0554 (14)0.0114 (11)0.0223 (12)0.0146 (11)
C60.0553 (16)0.0467 (13)0.0628 (15)0.0053 (11)0.0262 (13)0.0137 (12)
C70.0440 (14)0.0493 (13)0.0505 (13)0.0080 (10)0.0162 (11)0.0023 (11)
C80.0576 (16)0.0459 (13)0.0490 (14)0.0128 (12)0.0124 (12)0.0014 (11)
C90.0569 (15)0.0560 (15)0.0518 (14)0.0118 (12)0.0066 (12)0.0075 (12)
C100.0420 (13)0.0497 (13)0.0405 (13)0.0015 (10)0.0043 (10)0.0011 (10)
C110.0624 (16)0.0686 (17)0.0468 (14)0.0251 (14)0.0150 (12)0.0004 (12)
C120.0672 (19)0.096 (2)0.0622 (17)0.0311 (17)0.0075 (14)0.0046 (16)
C130.092 (2)0.0672 (19)0.078 (2)0.0169 (17)0.0178 (18)0.0034 (15)
C140.0531 (14)0.0326 (11)0.0390 (11)0.0071 (10)0.0154 (10)0.0007 (9)
C150.0576 (15)0.0453 (12)0.0441 (12)0.0056 (11)0.0190 (11)0.0084 (11)
C160.0592 (15)0.0457 (13)0.0381 (12)0.0053 (11)0.0090 (11)0.0048 (10)
C170.0494 (14)0.0392 (12)0.0444 (12)0.0006 (10)0.0059 (11)0.0040 (10)
C180.0560 (15)0.0417 (12)0.0447 (13)0.0034 (11)0.0164 (11)0.0004 (10)
C190.0558 (15)0.0349 (11)0.0373 (11)0.0057 (10)0.0133 (11)0.0033 (9)
C200.099 (2)0.0535 (16)0.0803 (19)0.0075 (15)0.0382 (18)0.0049 (14)
Geometric parameters (Å, º) top
S—C11.754 (2)C9—H9B0.9700
S—C201.796 (3)C11—C121.499 (3)
O1—C71.379 (3)C11—C131.519 (4)
O1—C81.381 (3)C11—H110.9800
O2—C101.316 (3)C12—H12A0.9600
O2—C111.465 (3)C12—H12B0.9600
O3—C101.207 (2)C12—H12C0.9600
O4—C171.370 (3)C13—H13A0.9600
O4—H40.81 (3)C13—H13B0.9600
C1—C81.344 (3)C13—H13C0.9600
C1—C21.450 (3)C14—C191.393 (3)
C2—C31.385 (3)C14—C151.400 (3)
C2—C71.391 (3)C15—C161.374 (3)
C3—C41.396 (3)C15—H150.9300
C3—H30.9300C16—C171.374 (3)
C4—C51.409 (3)C16—H160.9300
C4—C141.485 (3)C17—C181.389 (3)
C5—C61.376 (3)C18—C191.375 (3)
C5—H50.9300C18—H180.9300
C6—C71.379 (3)C19—H190.9300
C6—H60.9300C20—H20A0.9600
C8—C91.489 (3)C20—H20B0.9600
C9—C101.504 (3)C20—H20C0.9600
C9—H9A0.9700
C1—S—C20102.15 (11)O2—C11—H11109.7
C7—O1—C8105.56 (18)C12—C11—H11109.7
C10—O2—C11117.84 (17)C13—C11—H11109.7
C17—O4—H4106 (2)C11—C12—H12A109.5
C8—C1—C2106.7 (2)C11—C12—H12B109.5
C8—C1—S124.77 (18)H12A—C12—H12B109.5
C2—C1—S128.29 (18)C11—C12—H12C109.5
C3—C2—C7119.2 (2)H12A—C12—H12C109.5
C3—C2—C1135.7 (2)H12B—C12—H12C109.5
C7—C2—C1105.0 (2)C11—C13—H13A109.5
C2—C3—C4119.5 (2)C11—C13—H13B109.5
C2—C3—H3120.3H13A—C13—H13B109.5
C4—C3—H3120.3C11—C13—H13C109.5
C3—C4—C5118.8 (2)H13A—C13—H13C109.5
C3—C4—C14121.7 (2)H13B—C13—H13C109.5
C5—C4—C14119.53 (19)C19—C14—C15116.8 (2)
C6—C5—C4122.7 (2)C19—C14—C4121.87 (19)
C6—C5—H5118.6C15—C14—C4121.2 (2)
C4—C5—H5118.6C16—C15—C14121.6 (2)
C5—C6—C7116.4 (2)C16—C15—H15119.2
C5—C6—H6121.8C14—C15—H15119.2
C7—C6—H6121.8C17—C16—C15120.4 (2)
O1—C7—C6125.9 (2)C17—C16—H16119.8
O1—C7—C2110.76 (19)C15—C16—H16119.8
C6—C7—C2123.3 (2)O4—C17—C16122.7 (2)
C1—C8—O1112.0 (2)O4—C17—C18118.0 (2)
C1—C8—C9132.3 (2)C16—C17—C18119.2 (2)
O1—C8—C9115.8 (2)C19—C18—C17120.1 (2)
C8—C9—C10112.92 (19)C19—C18—H18119.9
C8—C9—H9A109.0C17—C18—H18119.9
C10—C9—H9A109.0C18—C19—C14121.7 (2)
C8—C9—H9B109.0C18—C19—H19119.2
C10—C9—H9B109.0C14—C19—H19119.2
H9A—C9—H9B107.8S—C20—H20A109.5
O3—C10—O2125.0 (2)S—C20—H20B109.5
O3—C10—C9124.6 (2)H20A—C20—H20B109.5
O2—C10—C9110.39 (19)S—C20—H20C109.5
O2—C11—C12105.5 (2)H20A—C20—H20C109.5
O2—C11—C13107.5 (2)H20B—C20—H20C109.5
C12—C11—C13114.6 (2)
C20—S—C1—C8113.8 (2)C7—O1—C8—C11.1 (2)
C20—S—C1—C272.8 (2)C7—O1—C8—C9179.05 (19)
C8—C1—C2—C3178.3 (2)C1—C8—C9—C1077.0 (3)
S—C1—C2—C37.3 (4)O1—C8—C9—C10102.7 (2)
C8—C1—C2—C70.6 (2)C11—O2—C10—O35.8 (4)
S—C1—C2—C7173.76 (17)C11—O2—C10—C9173.8 (2)
C7—C2—C3—C40.5 (3)C8—C9—C10—O318.4 (4)
C1—C2—C3—C4179.3 (2)C8—C9—C10—O2161.2 (2)
C2—C3—C4—C50.5 (3)C10—O2—C11—C12155.9 (2)
C2—C3—C4—C14178.91 (19)C10—O2—C11—C1381.4 (3)
C3—C4—C5—C60.4 (3)C3—C4—C14—C1933.2 (3)
C14—C4—C5—C6178.9 (2)C5—C4—C14—C19145.2 (2)
C4—C5—C6—C70.3 (3)C3—C4—C14—C15149.6 (2)
C8—O1—C7—C6178.9 (2)C5—C4—C14—C1532.0 (3)
C8—O1—C7—C20.7 (2)C19—C14—C15—C162.7 (3)
C5—C6—C7—O1179.3 (2)C4—C14—C15—C16174.6 (2)
C5—C6—C7—C20.3 (3)C14—C15—C16—C170.6 (3)
C3—C2—C7—O1179.24 (18)C15—C16—C17—O4177.1 (2)
C1—C2—C7—O10.1 (2)C15—C16—C17—C182.3 (3)
C3—C2—C7—C60.4 (3)O4—C17—C18—C19176.5 (2)
C1—C2—C7—C6179.5 (2)C16—C17—C18—C192.9 (3)
C2—C1—C8—O11.1 (3)C17—C18—C19—C140.7 (3)
S—C1—C8—O1173.51 (15)C15—C14—C19—C182.1 (3)
C2—C1—C8—C9179.1 (2)C4—C14—C19—C18175.23 (19)
S—C1—C8—C96.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.81 (3)2.02 (3)2.829 (3)171 (3)
C13—H13B···O4ii0.962.573.325 (3)135
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20O4S
Mr356.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)31.375 (3), 8.0055 (7), 15.274 (1)
β (°) 107.727 (1)
V3)3654.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.45 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.916, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
15589, 4158, 2474
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.06
No. of reflections4158
No. of parameters233
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.81 (3)2.02 (3)2.829 (3)171 (3)
C13—H13B···O4ii0.962.573.325 (3)135.3
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+3/2, z1/2.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Kang, B. W., Seo, P. J., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o5121–o5122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReuss, S. H. von & König, W. A. (2004). Phytochemistry, 65, 3113–3118.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds