organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Terephthalic acid–4,4′-bi­pyridine (2/1)

aCollege of Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China, and bThe College of Life Sciences, Northwest University, Xi-An 710069, People's Republic of China
*Correspondence e-mail: zhfli_sdut@yahoo.cn

(Received 4 August 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, 2C8H6O4·C10H8N2, the 4,4′-bipyridine mol­ecule is located on an inversion centre. In the crystal structure, strong inter­molecular O—H⋯N hydrogen bonds between the terephthalic acid and 4,4′-bipyridine mol­ecules lead to the formation of chains with graph-set motif C22(8) along the diagonal of the bc plane.

Related literature

For the potential applications of metal-organic frameworks, see: Zhang et al. (2007[Zhang, X. T., Dou, J. M., Wang, D. Q., Zhou, Y., Zhang, Y. X., Li, R. J., Yan, S. S., Ni, Z. H. & Jiang, J. Z. (2007). Cryst. Growth Des. 7, 1699-1705.]); Zhang et al. (2009[Zhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325-3332.]) For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H6O4·C10H8N2

  • Mr = 488.44

  • Monoclinic, P 21 /n

  • a = 7.788 (10) Å

  • b = 6.814 (8) Å

  • c = 20.77 (3) Å

  • β = 92.25 (2)°

  • V = 1102 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.27 × 0.19 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.980

  • 5164 measured reflections

  • 1930 independent reflections

  • 1192 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.178

  • S = 1.00

  • 1930 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2⋯N1 0.82 (2) 1.78 (2) 2.598 (4) 177.8 (14)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design and construction of metal-organic frameworks (MOFs) have attracted considerable attention in recent years, not only for their intriguing structural motifs but also for their potential applications in the areas of catalysis, separation, gas adsorption, molecular recognition, nonlinear optics, and magnetochemistry (Zhang et al. (2007); Zhang et al. (2009)). The title compound was not the intended product of a reaction to make a MOFs. We report here the crystal and molecular structure of (I). The asymmetric unit of the title compound contains one terephthalic acid molecule and half 4,4'-bipyridine molecule, Fig. 1. The crystal structure is stabilized by strong intermolecular O—H··· N hydrogen bonds between terephthalic acid and 4,4'-bipyridine molecules, this interaction lead to the formation chains C22(8) (Bernstein, et al., 1995) along the diagonal of the bc-plane , Fig 2, Table 1.

Related literature top

For the potential applications of metal-organic frameworks, see: Zhang et al. (2007); Zhang et al. (2009) For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of terephthalic acid (1 mmoL), 4,4'-bipyridine (1 mmoL, 0.156 g), and iron trichloride (1 mmoL, 0.162 g) in 10 ml distilled water sealed in a 25 ml Teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals suitable for the X-ray experiment were obtained. Anal. Calc. for C26H20N2O8: C 63.88, H 4.09, N 5.73%; Found: C 63.70, H 3.98, N 5.62%.

Refinement top

The H2 atom was refined isotropically. All other H atoms were placed in calculated positions with C—H = 0.93 and O1—H1 = 0.80 Å and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I). Dotted lines show hydrogen bonding.
terephthalic acid–4,4'-bipyridine (2/1) top
Crystal data top
2C8H6O4·C10H8N2F(000) = 508
Mr = 488.44Dx = 1.473 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1066 reflections
a = 7.788 (10) Åθ = 2.8–23.0°
b = 6.814 (8) ŵ = 0.11 mm1
c = 20.77 (3) ÅT = 296 K
β = 92.25 (2)°Block, colorless
V = 1102 (2) Å30.27 × 0.19 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1930 independent reflections
Radiation source: fine-focus sealed tube1192 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.971, Tmax = 0.980k = 86
5164 measured reflectionsl = 2416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.098P)2 + 0.1551P]
where P = (Fo2 + 2Fc2)/3
1930 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C8H6O4·C10H8N2V = 1102 (2) Å3
Mr = 488.44Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.788 (10) ŵ = 0.11 mm1
b = 6.814 (8) ÅT = 296 K
c = 20.77 (3) Å0.27 × 0.19 × 0.18 mm
β = 92.25 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1930 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1192 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.980Rint = 0.028
5164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.20 e Å3
1930 reflectionsΔρmin = 0.23 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1228 (3)1.5441 (4)0.21096 (13)0.0521 (7)
C21.0571 (3)1.3616 (4)0.18496 (13)0.0568 (7)
C31.0878 (4)1.3136 (4)0.12209 (14)0.0652 (8)
H31.14971.39810.09660.078*
C41.0260 (3)1.1400 (4)0.09756 (13)0.0615 (7)
H41.04581.10570.05520.074*
C50.9345 (3)1.0161 (4)0.13570 (12)0.0531 (7)
C60.8676 (3)0.8295 (4)0.10696 (13)0.0594 (7)
C70.9048 (3)1.0691 (4)0.19886 (13)0.0616 (8)
H70.84200.98590.22450.074*
C80.9666 (3)1.2420 (4)0.22379 (13)0.0615 (7)
H80.94751.27710.26620.074*
C90.6969 (4)0.3813 (4)0.02420 (16)0.0782 (9)
H90.77120.46760.00460.094*
C100.6398 (4)0.2208 (4)0.00991 (15)0.0758 (9)
H100.67440.20150.05180.091*
C110.5323 (3)0.0887 (3)0.01718 (13)0.0519 (7)
C120.4889 (3)0.1285 (4)0.07984 (14)0.0655 (8)
H120.41780.04260.10120.079*
C130.5501 (4)0.2936 (4)0.11059 (14)0.0688 (8)
H130.51780.31670.15250.083*
N10.6518 (3)0.4205 (3)0.08396 (11)0.0632 (7)
O11.2080 (3)1.6465 (4)0.17755 (14)0.0971 (8)
O21.0894 (3)1.5957 (3)0.26370 (13)0.1001 (8)
O30.9023 (3)0.7783 (3)0.05288 (10)0.0876 (7)
O40.7709 (3)0.7296 (3)0.14372 (10)0.0740 (6)
H11.24111.74240.19660.146*
H20.732 (3)0.634 (3)0.1242 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0583 (16)0.0482 (15)0.0498 (16)0.0067 (12)0.0016 (13)0.0059 (13)
C20.0580 (16)0.0590 (16)0.0531 (16)0.0056 (12)0.0013 (13)0.0056 (13)
C30.0746 (18)0.0663 (17)0.0554 (17)0.0053 (14)0.0115 (14)0.0004 (14)
C40.0753 (18)0.0649 (17)0.0452 (16)0.0029 (14)0.0132 (13)0.0048 (13)
C50.0594 (15)0.0560 (15)0.0439 (15)0.0040 (12)0.0033 (12)0.0003 (12)
C60.0703 (17)0.0568 (15)0.0515 (17)0.0001 (13)0.0079 (14)0.0009 (13)
C70.0730 (18)0.0671 (17)0.0454 (16)0.0052 (13)0.0106 (13)0.0006 (13)
C80.0702 (17)0.0695 (18)0.0451 (15)0.0023 (14)0.0052 (13)0.0081 (13)
C90.103 (2)0.0695 (19)0.064 (2)0.0242 (17)0.0162 (18)0.0023 (16)
C100.106 (2)0.0689 (18)0.0530 (18)0.0249 (17)0.0161 (17)0.0045 (15)
C110.0536 (15)0.0519 (14)0.0501 (15)0.0024 (11)0.0001 (12)0.0001 (12)
C120.0717 (18)0.0655 (17)0.0603 (18)0.0128 (14)0.0139 (15)0.0041 (14)
C130.0780 (19)0.0737 (19)0.0556 (18)0.0069 (15)0.0138 (15)0.0087 (15)
N10.0732 (15)0.0586 (14)0.0579 (15)0.0049 (11)0.0043 (12)0.0007 (11)
O10.1010 (18)0.0836 (17)0.105 (2)0.0092 (14)0.0137 (17)0.0178 (15)
O20.1216 (19)0.0888 (16)0.0897 (19)0.0073 (13)0.0038 (15)0.0325 (14)
O30.1339 (18)0.0751 (14)0.0559 (13)0.0234 (12)0.0306 (12)0.0190 (11)
O40.0982 (15)0.0655 (13)0.0594 (13)0.0208 (11)0.0183 (11)0.0096 (10)
Geometric parameters (Å, º) top
C1—O21.189 (3)C8—H80.9300
C1—O11.202 (4)C9—N11.330 (4)
C1—C21.441 (4)C9—C101.368 (4)
C2—C81.362 (4)C9—H90.9300
C2—C31.376 (4)C10—C111.366 (4)
C3—C41.368 (4)C10—H100.9300
C3—H30.9300C11—C121.384 (4)
C4—C51.375 (3)C11—C11i1.482 (5)
C4—H40.9300C12—C131.370 (4)
C5—C71.389 (4)C12—H120.9300
C5—C61.491 (4)C13—N11.309 (3)
C6—O31.217 (3)C13—H130.9300
C6—O41.288 (3)O1—H10.8000
C7—C81.367 (4)O4—H20.82 (2)
C7—H70.9300
O2—C1—O1120.4 (3)C2—C8—C7118.3 (3)
O2—C1—C2120.9 (3)C2—C8—H8120.9
O1—C1—C2118.7 (3)C7—C8—H8120.8
O2—C1—H194.0N1—C9—C10123.4 (3)
C2—C1—H1145.0N1—C9—H9118.3
C8—C2—C3122.2 (3)C10—C9—H9118.3
C8—C2—C1118.6 (3)C11—C10—C9120.4 (3)
C3—C2—C1119.2 (3)C11—C10—H10119.8
C4—C3—C2119.2 (3)C9—C10—H10119.8
C4—C3—H3120.4C10—C11—C12115.8 (2)
C2—C3—H3120.4C10—C11—C11i122.8 (3)
C3—C4—C5119.9 (3)C12—C11—C11i121.4 (3)
C3—C4—H4120.0C13—C12—C11120.4 (3)
C5—C4—H4120.0C13—C12—H12119.8
C4—C5—C7119.6 (3)C11—C12—H12119.8
C4—C5—C6118.3 (2)N1—C13—C12123.4 (3)
C7—C5—C6122.1 (2)N1—C13—H13118.3
O3—C6—O4123.5 (3)C12—C13—H13118.3
O3—C6—C5121.8 (2)C13—N1—C9116.6 (2)
O4—C6—C5114.6 (2)C13—N1—H2123.3 (10)
C8—C7—C5120.8 (2)C9—N1—H2120.1 (10)
C8—C7—H7119.6C1—O1—H1111.00
C5—C7—H7119.6C6—O4—H2110 (2)
C13—N1—C9—C101.7 (5)C1—C2—C3—C4179.7 (2)
N1—C9—C10—C110.9 (5)C2—C3—C4—C50.2 (4)
C9—C10—C11—C120.6 (4)C3—C4—C5—C70.4 (4)
C9—C10—C11—C11i179.2 (3)C3—C4—C5—C6179.4 (2)
C10—C11—C12—C131.3 (4)C4—C5—C6—O35.4 (4)
C11i—C11—C12—C13179.9 (3)C7—C5—C6—O3175.6 (3)
C9—N1—C13—C121.0 (4)C4—C5—C6—O4174.3 (2)
C11—C12—C13—N10.5 (4)C7—C5—C6—O44.7 (4)
O2—C1—C2—C85.1 (4)C4—C5—C7—C80.5 (4)
O1—C1—C2—C8177.3 (3)C6—C5—C7—C8179.5 (2)
O2—C1—C2—C3175.2 (3)C3—C2—C8—C70.2 (4)
O1—C1—C2—C32.6 (4)C1—C2—C8—C7179.8 (2)
C8—C2—C3—C40.1 (4)C5—C7—C8—C20.4 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2···N10.82 (2)1.78 (2)2.598 (4)178 (1)

Experimental details

Crystal data
Chemical formula2C8H6O4·C10H8N2
Mr488.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.788 (10), 6.814 (8), 20.77 (3)
β (°) 92.25 (2)
V3)1102 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.19 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.971, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5164, 1930, 1192
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.178, 1.00
No. of reflections1930
No. of parameters169
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2···N10.82 (2)1.78 (2)2.598 (4)177.8 (14)
 

Acknowledgements

The authors thank the NSFC (grant No. 20776081) and the Natural Science Foundation of Shandong Province (grant No. Y2006B37).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. T., Dou, J. M., Wang, D. Q., Zhou, Y., Zhang, Y. X., Li, R. J., Yan, S. S., Ni, Z. H. & Jiang, J. Z. (2007). Cryst. Growth Des. 7, 1699–1705.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X. T., Dou, J. M., Wei, P. H., Li, D. C., Li, B., Shi, C. W. & Hu, B. (2009). Inorg. Chim. Acta, 362, 3325–3332.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds