metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1042-m1043

Bis[μ-1,2-bis­­(1H-imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]disilver(I) 3-carboxyl­ato-4-hy­droxy­benzene­sulfonate methanol solvate trihydrate

aDepartment of Chemistry and Pharmaceutical Engineering, Suihua University, Suihua 152061, People's Republic of China
*Correspondence e-mail: lhy4486@yahoo.com.cn

(Received 27 June 2009; accepted 30 July 2009; online 8 August 2009)

In the title compound, [Ag2(C14H14N4)2](C7H4O6S)·CH3OH·3H2O, the complex dication has a binuclear structure in which each AgI ion is two-coordinated in a slightly distorted linear coordination geometry. The two AgI atoms are bridged by two 1,2-bis­[(1H-imidazol-1-yl)meth­yl]benzene (IBI) ligands, forming a 22-membered ring. In the dication, ππ inter­actions are observed between the imidazole rings with centroid–centroid distances of 3.472 (3) and 3.636 (3) Å. In the crystal, the uncoordinated water mol­ecules, anions and methanol solvent mol­ecules are linked into chains along the b axis by O—H⋯O hydrogen bonds. In addition, ππ inter­actions are observed between the benzene rings of the IBI ligands, with a centroid–centroid distance of 3.776 (2) Å. The sulfonate group is disordered over two orientations with occupancies of 0.676 (12) and 0.324 (12).

Related literature

For the design and synthesis of silver(I) sulfonates, see: Cote & Shimizu (2003[Cote, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-64.]); Ma et al. (2005[Ma, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. & Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807-812.]). For silver(I) sulfonate compounds modified by secondary nitro­gen-based ligands, see: Cote & Shimizu (2004[Cote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663-6673.]); Liu et al. (2007[Liu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299-7311.]). For Ag—N bond distances in N-containing AgI compounds, see: Li et al. (2006[Li, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209-215.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C14H14N4)2](C7H4O6S)·CH4O·3H2O

  • Mr = 994.58

  • Triclinic, [P \overline 1]

  • a = 8.9959 (18) Å

  • b = 13.947 (3) Å

  • c = 16.008 (3) Å

  • α = 102.71 (3)°

  • β = 92.37 (3)°

  • γ = 91.34 (3)°

  • V = 1956.5 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.771, Tmax = 0.869

  • 19149 measured reflections

  • 8696 independent reflections

  • 5684 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.04

  • 8696 reflections

  • 569 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N5 2.105 (3)
Ag1—N3 2.121 (3)
Ag2—N4 2.089 (3)
Ag2—N7 2.091 (3)
N5—Ag1—N3 176.76 (13)
N4—Ag2—N7 172.60 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O3W 0.85 (6) 2.35 (5) 2.892 (9) 122 (4)
O2W—H2A⋯O1 0.86 (5) 2.52 (6) 3.063 (7) 122 (6)
O3—H4A⋯O1 0.86 (4) 1.71 (3) 2.486 (6) 149 (5)
O7—H7A⋯O6i 0.84 (1) 1.88 (2) 2.697 (6) 164 (4)
O2W—H2B⋯O1Wii 0.86 (5) 2.24 (5) 2.790 (9) 122 (4)
O3W—H3A⋯O3Wiii 0.85 (6) 2.52 (4) 3.053 (10) 122 (2)
Symmetry codes: (i) x, y, z-1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of silver(I) sulfonates have attracted intense interests of chemists (Cote & Shimizu, 2003; Ma et al., 2005). Some silver(I) sulfonate compounds, modified by secondary nitrogen-based ligands, have been reported (Cote & Shimizu, 2004; Liu et al., 2007). In most of these silver(I) sulfonate complexes, the sulfonate ligand acts as a counter-anion. Herein, we present a new silver-sulfonate complex (I), namely, [Ag2(IBI)2]L.CH3OH.3H2O, where IBI is 1,2-bis[(1H-imidazol-1-yl)methyl]benzene and L is 3-carboxy-4-hydroxybenzenesulfonic acid.

Selected bond distances and angles are listed in Table 1. The contents of the asymmetric unit is shown in Fig.1. The silver complex shows a binuclear structure, where each of AgI atom has a slightly distorted linear geometry and is coordinated by two N atoms from the IBI ligands. The Ag—N bond distances are within the normal range and are comparable to those observed in N-containing AgIcompounds (Li et al., 2006). Notably, the L ligand does not coordinate to the AgI center and acts as a counter-anion. In the complex dication, ππ interactions are observed between the imidazole rings with Cg1···Cg2 and Cg3···Cg4 distances of 3.472 (3) and 3.636 (3) Å, respectively; Cg1, Cg2, Cg3 and Cg4 are centroids of the N1/C16/C24/N4/C35, N2/C17/N3/C19/C18, N5/C20/N6/C22/C21 and N7/C32/C31/N8/C33, rings, respectively.

In the crystal, the lattice water molecules, sulfonate oxygen atoms, and hydroxyl oxygen atoms are involved in the formation of O—H···O hydrogen-bonded chains along the b axis (Table 2). In addition, π-π interactions between the benzene rings of the IBI ligands, with a Cg5···Cg6iii distance of 3.776 (2) Å [Cg5 and Cg6 are centroids of the C8-C13 and C24-C29 rings, respectively; symmetry code: (iii) x, y, 1+z] are observed (Fig.2).

Related literature top

For he design and synthesis of silver(I) sulfonates, see: Cote & Shimizu (2003); Ma et al. (2005). For silver(I) sulfonate compounds modified by secondary nitrogen-based ligands, see: Cote & Shimizu (2004); Liu et al. (2007). For Ag—N bond distances in N-containing AgIcompounds, see: Li et al. (2006).

Experimental top

An aqueous solution (10 ml) of 3-carboxy-4-hydroxybenzenesulfonate anion (1 mmol) was added to solid Ag2CO3 (0.5 mmol) and stirred for several minutes until no further CO2 was given off. 1-(3-(1H-Imidazol-1-yl)methyl)benzyl)-1H-imidazole (1 mmol) was then added and a precipitate was formed. The precipitate was dissolved by ammonium hydroxide. Single crystals of the title compound were obtained by slow evaporation of the solution for 5 d at room temperature.

Refinement top

Hydroxy H atoms were located in a difference map and refined with a O—H distance restraint of 0.85 (1) Å. Water H atoms were located in a difference Fourier map and refined with O—H and H···H distance restraints of 0.85 (1) Å and 1.35 (1) Å, respectively, and with Uiso(H) = 1.5Ueq(O). At this stage, short H···H contacts involving water H atoms were observed but attempts to locate alternate positions for these H atoms failed. Hence, the H1A···H3B, H1B···H3B, H1A···H2Bii and H3A···H3Aiii [symmetry code: (ii) -x,-y,1 - z); (iii): -x,1 - y,1 - z] distances were restrained to 2.20 (1) Å to avoid short H···H contacts. H atoms bonded to C atoms were positioned geometrically (C-H = 0.93 or 0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The sulfonate O atoms are disordered over two orientations with occupancies of 0.676 (12) and 0.324 (12).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The aymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder component of the C7H4O6S2- ion is shown.
[Figure 2] Fig. 2. View of the formation of a chain through π-π interactions in the title compound. The anions, methanol and water molecules have been omitted for clarity.
Bis[µ-1,2-bis(1H-imidazol-1-ylmethyl)benzene- κ2N3:N3']disilver(I) 3-carboxylato-4-hydroxybenzenesulfonate methanol solvate trihydrate top
Crystal data top
[Ag2(C14H14N4)2](C7H4O6S)·CH4O·3H2OZ = 2
Mr = 994.58F(000) = 1008
Triclinic, P1Dx = 1.688 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9959 (18) ÅCell parameters from 8696 reflections
b = 13.947 (3) Åθ = 3.0–27.5°
c = 16.008 (3) ŵ = 1.12 mm1
α = 102.71 (3)°T = 293 K
β = 92.37 (3)°Block, colourless
γ = 91.34 (3)°0.18 × 0.15 × 0.12 mm
V = 1956.5 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8696 independent reflections
Radiation source: fine-focus sealed tube5684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1110
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.771, Tmax = 0.869l = 2020
19149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.9392P]
where P = (Fo2 + 2Fc2)/3
8696 reflections(Δ/σ)max = 0.001
569 parametersΔρmax = 0.48 e Å3
15 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ag2(C14H14N4)2](C7H4O6S)·CH4O·3H2Oγ = 91.34 (3)°
Mr = 994.58V = 1956.5 (7) Å3
Triclinic, P1Z = 2
a = 8.9959 (18) ÅMo Kα radiation
b = 13.947 (3) ŵ = 1.12 mm1
c = 16.008 (3) ÅT = 293 K
α = 102.71 (3)°0.18 × 0.15 × 0.12 mm
β = 92.37 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8696 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5684 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 0.869Rint = 0.030
19149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04315 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
8696 reflectionsΔρmin = 0.41 e Å3
569 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.51631 (4)0.61818 (2)0.156865 (18)0.05298 (11)
Ag20.50633 (5)0.87099 (3)0.205113 (19)0.06856 (14)
C10.0311 (4)0.3785 (3)0.8229 (2)0.0382 (8)
C20.0830 (4)0.2920 (3)0.7783 (2)0.0405 (8)
H20.15720.29340.73980.049*
C30.0281 (4)0.2017 (3)0.7887 (2)0.0422 (8)
C40.0854 (4)0.2010 (3)0.8456 (3)0.0480 (9)
C50.1369 (4)0.2880 (3)0.8914 (3)0.0532 (10)
H50.21120.28690.92990.064*
C60.0797 (4)0.3770 (3)0.8810 (3)0.0488 (9)
H60.11480.43560.91250.059*
C70.0878 (5)0.1075 (3)0.7394 (3)0.0658 (12)
C80.3217 (4)0.6528 (3)0.6160 (2)0.0485 (10)
H80.32400.58450.60480.058*
C90.2240 (4)0.7004 (4)0.6736 (3)0.0563 (12)
H90.16070.66450.70060.068*
C100.2201 (5)0.8008 (4)0.6910 (2)0.0585 (11)
H100.15430.83340.73000.070*
C110.3149 (4)0.8536 (3)0.6501 (2)0.0474 (9)
H110.31240.92180.66180.057*
C120.4132 (4)0.8056 (3)0.5921 (2)0.0357 (7)
C130.4166 (4)0.7038 (3)0.5745 (2)0.0364 (7)
C140.5186 (4)0.6475 (3)0.5104 (2)0.0495 (9)
H14A0.61480.68180.51650.059*
H14B0.53340.58300.52240.059*
C150.5127 (4)0.8669 (3)0.5488 (2)0.0492 (10)
H15A0.52790.93210.58540.059*
H15B0.60900.83710.54130.059*
C160.3078 (4)0.8984 (3)0.4464 (3)0.0550 (11)
H350.23100.91040.48410.066*
C170.5375 (4)0.6265 (3)0.3517 (2)0.0437 (8)
H170.64080.62440.35170.052*
C180.3123 (4)0.6337 (4)0.3954 (3)0.0584 (11)
H180.23070.63720.42960.070*
C190.3091 (5)0.6254 (4)0.3102 (3)0.0620 (12)
H190.22340.62330.27520.074*
C200.4847 (4)0.6288 (3)0.0366 (2)0.0393 (8)
H200.38170.63310.03670.047*
C210.7098 (5)0.6150 (4)0.0021 (3)0.0675 (13)
H210.79450.60820.03540.081*
C220.7108 (4)0.6219 (4)0.0795 (3)0.0626 (13)
H220.79320.62040.11290.075*
C230.5088 (4)0.6425 (3)0.1888 (2)0.0374 (8)
H23A0.41090.67030.18360.045*
H23B0.49870.57820.22740.045*
C240.6103 (3)0.7078 (2)0.22626 (19)0.0323 (7)
C250.7119 (4)0.6636 (3)0.2848 (2)0.0470 (9)
H250.71660.59550.29900.056*
C260.8063 (4)0.7204 (4)0.3223 (2)0.0577 (12)
H260.87360.69020.36160.069*
C270.8006 (5)0.8198 (4)0.3016 (3)0.0605 (12)
H270.86500.85770.32610.073*
C280.7001 (4)0.8649 (3)0.2446 (2)0.0496 (10)
H280.69560.93310.23180.059*
C290.6049 (4)0.8095 (2)0.2058 (2)0.0346 (7)
C300.4982 (4)0.8632 (3)0.1433 (2)0.0419 (8)
H30A0.47840.92650.15660.050*
H30B0.40480.82570.14940.050*
C310.6986 (4)0.9128 (3)0.0229 (3)0.0568 (11)
H310.77540.93090.05400.068*
C320.7026 (5)0.9151 (3)0.0608 (3)0.0576 (11)
H320.78460.93570.09830.069*
C330.4839 (4)0.8623 (3)0.0121 (2)0.0454 (9)
H330.38540.83950.00850.055*
C340.3000 (5)0.9002 (3)0.3616 (3)0.0586 (11)
H360.21610.91420.33110.070*
C350.5229 (5)0.8640 (3)0.3931 (2)0.0496 (9)
H3240.62250.84800.38880.060*
C360.0543 (6)0.8125 (4)0.0864 (3)0.0770 (14)
H36A0.00160.80510.03720.115*
H36B0.01070.79420.13680.115*
H36C0.08790.87980.07930.115*
N10.4492 (3)0.8757 (2)0.46511 (19)0.0432 (7)
N20.4585 (3)0.6358 (2)0.42210 (18)0.0410 (7)
N30.4505 (4)0.6207 (2)0.28299 (18)0.0448 (7)
N40.4359 (4)0.8780 (2)0.3290 (2)0.0524 (8)
N50.5701 (4)0.6192 (2)0.03033 (19)0.0451 (7)
N60.5658 (3)0.6314 (2)0.10393 (17)0.0341 (6)
N70.5693 (4)0.8829 (2)0.0834 (2)0.0511 (8)
N80.5583 (3)0.8786 (2)0.05409 (18)0.0384 (7)
O10.0306 (4)0.0287 (2)0.7521 (3)0.0817 (11)
O20.1844 (5)0.1116 (3)0.6878 (3)0.1196 (18)
O30.1455 (4)0.1150 (3)0.8567 (2)0.0720 (9)
H4A0.094 (5)0.068 (3)0.829 (3)0.09 (2)*
O70.1786 (3)0.7512 (2)0.0952 (2)0.0607 (8)
H7A0.147 (4)0.6923 (12)0.110 (2)0.045 (12)*
O1W0.1305 (6)0.2310 (5)0.5406 (4)0.1396 (19)
H1A0.0362 (19)0.234 (3)0.533 (6)0.209*
H1B0.156 (7)0.285 (2)0.575 (5)0.209*
O2W0.0029 (6)0.0585 (5)0.5588 (3)0.1278 (17)
H2A0.058 (6)0.040 (7)0.599 (3)0.192*
H2B0.054 (7)0.075 (3)0.513 (3)0.192*
O3W0.0648 (7)0.4362 (5)0.5578 (5)0.181 (3)
H3B0.019 (11)0.389 (2)0.523 (6)0.272*
H3A0.005 (7)0.483 (4)0.5640 (14)0.272*
S10.10110 (11)0.49166 (8)0.80514 (8)0.0510 (3)
O40.2488 (10)0.4775 (7)0.7857 (5)0.064 (2)0.676 (12)
O50.0049 (6)0.5169 (5)0.7424 (5)0.076 (3)0.676 (12)
O60.0864 (8)0.5626 (4)0.8905 (4)0.080 (2)0.676 (12)
O6'0.0143 (13)0.5620 (9)0.8224 (13)0.090 (8)0.324 (12)
O5'0.125 (2)0.4631 (10)0.7031 (8)0.107 (7)0.324 (12)
O4'0.253 (2)0.4992 (18)0.8326 (15)0.094 (8)0.324 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0790 (2)0.04833 (19)0.03198 (15)0.00432 (15)0.00483 (14)0.00901 (13)
Ag20.1229 (3)0.0504 (2)0.03425 (17)0.00170 (19)0.01163 (18)0.01212 (14)
C10.0295 (17)0.046 (2)0.0401 (18)0.0052 (14)0.0040 (15)0.0122 (16)
C20.0265 (16)0.052 (2)0.044 (2)0.0043 (15)0.0026 (15)0.0138 (17)
C30.0359 (19)0.047 (2)0.0415 (19)0.0066 (16)0.0045 (16)0.0081 (17)
C40.046 (2)0.054 (2)0.046 (2)0.0101 (18)0.0058 (18)0.0184 (19)
C50.049 (2)0.068 (3)0.046 (2)0.002 (2)0.0157 (19)0.020 (2)
C60.050 (2)0.050 (2)0.046 (2)0.0058 (18)0.0076 (18)0.0086 (18)
C70.049 (2)0.053 (3)0.086 (3)0.004 (2)0.003 (2)0.004 (2)
C80.058 (2)0.045 (2)0.046 (2)0.0104 (18)0.0092 (19)0.0203 (18)
C90.043 (2)0.089 (4)0.047 (2)0.009 (2)0.0020 (19)0.038 (2)
C100.052 (2)0.092 (4)0.0321 (19)0.009 (2)0.0080 (18)0.014 (2)
C110.056 (2)0.051 (2)0.0339 (18)0.0069 (18)0.0001 (18)0.0080 (17)
C120.0412 (19)0.042 (2)0.0247 (15)0.0017 (15)0.0018 (14)0.0107 (14)
C130.0413 (19)0.042 (2)0.0259 (15)0.0018 (15)0.0058 (14)0.0090 (14)
C140.058 (2)0.053 (2)0.0353 (19)0.0108 (19)0.0033 (18)0.0044 (17)
C150.059 (2)0.052 (2)0.038 (2)0.0156 (19)0.0024 (18)0.0166 (18)
C160.045 (2)0.077 (3)0.050 (2)0.012 (2)0.0021 (19)0.030 (2)
C170.044 (2)0.048 (2)0.0364 (19)0.0062 (17)0.0022 (17)0.0048 (16)
C180.037 (2)0.094 (4)0.039 (2)0.002 (2)0.0025 (18)0.005 (2)
C190.048 (2)0.092 (4)0.037 (2)0.002 (2)0.0084 (19)0.002 (2)
C200.0400 (19)0.040 (2)0.0407 (19)0.0072 (15)0.0024 (16)0.0146 (16)
C210.046 (2)0.107 (4)0.058 (3)0.006 (2)0.009 (2)0.040 (3)
C220.038 (2)0.100 (4)0.062 (3)0.006 (2)0.003 (2)0.043 (3)
C230.0415 (19)0.0361 (19)0.0362 (17)0.0049 (14)0.0052 (15)0.0137 (15)
C240.0323 (17)0.0390 (19)0.0262 (15)0.0001 (14)0.0034 (13)0.0096 (14)
C250.047 (2)0.054 (2)0.0364 (19)0.0074 (18)0.0021 (17)0.0011 (17)
C260.037 (2)0.101 (4)0.0346 (19)0.008 (2)0.0062 (17)0.014 (2)
C270.046 (2)0.096 (4)0.047 (2)0.018 (2)0.004 (2)0.033 (2)
C280.063 (2)0.048 (2)0.040 (2)0.0165 (19)0.0027 (19)0.0183 (18)
C290.0394 (18)0.0397 (19)0.0252 (15)0.0039 (14)0.0030 (14)0.0098 (14)
C300.050 (2)0.042 (2)0.0331 (17)0.0053 (16)0.0042 (16)0.0061 (15)
C310.046 (2)0.078 (3)0.042 (2)0.002 (2)0.0054 (19)0.005 (2)
C320.056 (3)0.074 (3)0.038 (2)0.010 (2)0.0082 (19)0.003 (2)
C330.058 (2)0.036 (2)0.041 (2)0.0033 (17)0.0071 (18)0.0063 (16)
C340.059 (3)0.070 (3)0.049 (2)0.018 (2)0.009 (2)0.023 (2)
C350.063 (3)0.046 (2)0.041 (2)0.0007 (18)0.0079 (19)0.0134 (18)
C360.071 (3)0.087 (4)0.075 (3)0.013 (3)0.006 (3)0.020 (3)
N10.0487 (18)0.0468 (18)0.0375 (16)0.0093 (14)0.0003 (14)0.0181 (14)
N20.0461 (17)0.0435 (18)0.0306 (15)0.0050 (13)0.0009 (13)0.0019 (13)
N30.0539 (19)0.0479 (19)0.0296 (15)0.0069 (14)0.0006 (14)0.0020 (13)
N40.074 (2)0.049 (2)0.0354 (16)0.0094 (17)0.0016 (17)0.0148 (15)
N50.059 (2)0.0443 (18)0.0344 (16)0.0077 (14)0.0006 (15)0.0135 (14)
N60.0365 (15)0.0330 (15)0.0354 (15)0.0027 (12)0.0013 (13)0.0139 (12)
N70.071 (2)0.0445 (19)0.0368 (17)0.0072 (16)0.0039 (16)0.0073 (14)
N80.0454 (17)0.0362 (16)0.0320 (15)0.0060 (13)0.0005 (13)0.0035 (12)
O10.077 (2)0.0436 (19)0.118 (3)0.0043 (16)0.014 (2)0.0087 (19)
O20.095 (3)0.074 (3)0.172 (5)0.005 (2)0.076 (3)0.025 (3)
O30.081 (2)0.066 (2)0.075 (2)0.027 (2)0.0109 (19)0.0296 (19)
O70.0474 (16)0.064 (2)0.070 (2)0.0004 (15)0.0075 (15)0.0127 (17)
O1W0.139 (4)0.184 (6)0.093 (4)0.007 (4)0.005 (3)0.026 (4)
O2W0.144 (4)0.152 (5)0.089 (3)0.038 (4)0.023 (3)0.026 (3)
O3W0.181 (6)0.162 (6)0.179 (7)0.033 (5)0.039 (5)0.010 (5)
S10.0394 (5)0.0466 (6)0.0711 (7)0.0050 (4)0.0040 (5)0.0238 (5)
O40.036 (4)0.057 (4)0.104 (6)0.000 (3)0.022 (5)0.027 (4)
O50.064 (4)0.076 (4)0.102 (5)0.016 (3)0.029 (4)0.056 (4)
O60.122 (5)0.041 (3)0.067 (4)0.019 (3)0.025 (4)0.009 (2)
O6'0.066 (8)0.056 (7)0.17 (2)0.030 (6)0.050 (12)0.053 (10)
O5'0.165 (17)0.095 (10)0.079 (9)0.003 (10)0.026 (9)0.056 (8)
O4'0.048 (8)0.092 (15)0.160 (19)0.027 (9)0.046 (13)0.078 (15)
Geometric parameters (Å, º) top
Ag1—N52.105 (3)C21—H210.93
Ag1—N32.121 (3)C22—N61.364 (5)
Ag2—N42.089 (3)C22—H220.93
Ag2—N72.091 (3)C23—N61.474 (4)
C1—C21.363 (5)C23—C241.506 (4)
C1—C61.393 (5)C23—H23A0.97
C1—S11.770 (3)C23—H23B0.97
C2—C31.387 (5)C24—C291.387 (5)
C2—H20.93C24—C251.392 (5)
C3—C41.397 (5)C25—C261.388 (6)
C3—C71.500 (6)C25—H250.93
C4—O31.354 (5)C26—C271.355 (7)
C4—C51.374 (6)C26—H260.93
C5—C61.379 (5)C27—C281.374 (6)
C5—H50.93C27—H270.93
C6—H60.93C28—C291.393 (4)
C7—O21.233 (6)C28—H280.93
C7—O11.263 (5)C29—C301.505 (5)
C8—C91.375 (6)C30—N81.475 (4)
C8—C131.380 (5)C30—H30A0.97
C8—H80.93C30—H30B0.97
C9—C101.368 (6)C31—C321.332 (5)
C9—H90.93C31—N81.372 (5)
C10—C111.389 (5)C31—H310.93
C10—H100.93C32—N71.361 (5)
C11—C121.383 (5)C32—H320.93
C11—H110.93C33—N71.323 (5)
C12—C131.387 (5)C33—N81.333 (5)
C12—C151.513 (4)C33—H330.93
C13—C141.506 (5)C34—N41.365 (5)
C14—N21.467 (4)C34—H360.93
C14—H14A0.97C35—N41.317 (5)
C14—H14B0.97C35—N11.334 (5)
C15—N11.466 (5)C35—H3240.93
C15—H15A0.97C36—O71.416 (6)
C15—H15B0.97C36—H36A0.96
C16—N11.355 (5)C36—H36B0.96
C16—C341.361 (5)C36—H36C0.96
C16—H350.93O3—H4A0.86 (4)
C17—N31.311 (5)O7—H7A0.842 (10)
C17—N21.341 (4)O1W—H1A0.856 (10)
C17—H170.93O1W—H1B0.85 (6)
C18—C191.343 (5)O2W—H2A0.86 (5)
C18—N21.363 (5)O2W—H2B0.86 (5)
C18—H180.93O3W—H3B0.85 (7)
C19—N31.360 (5)O3W—H3A0.85 (6)
C19—H190.93S1—O6'1.258 (10)
C20—N51.326 (5)S1—O41.386 (9)
C20—N61.332 (4)S1—O51.407 (5)
C20—H200.93S1—O4'1.42 (2)
C21—C221.330 (6)S1—O61.514 (5)
C21—N51.351 (5)S1—O5'1.619 (13)
N5—Ag1—N3176.76 (13)C27—C26—H26120.0
N4—Ag2—N7172.60 (13)C25—C26—H26120.0
C2—C1—C6119.5 (3)C26—C27—C28120.4 (3)
C2—C1—S1120.1 (3)C26—C27—H27119.8
C6—C1—S1120.4 (3)C28—C27—H27119.8
C1—C2—C3121.9 (3)C27—C28—C29120.7 (4)
C1—C2—H2119.1C27—C28—H28119.7
C3—C2—H2119.1C29—C28—H28119.7
C2—C3—C4118.2 (4)C24—C29—C28119.4 (3)
C2—C3—C7120.9 (4)C24—C29—C30122.4 (3)
C4—C3—C7120.9 (4)C28—C29—C30118.2 (3)
O3—C4—C5119.2 (4)N8—C30—C29111.6 (3)
O3—C4—C3120.7 (4)N8—C30—H30A109.3
C5—C4—C3120.2 (3)C29—C30—H30A109.3
C4—C5—C6120.8 (4)N8—C30—H30B109.3
C4—C5—H5119.6C29—C30—H30B109.3
C6—C5—H5119.6H30A—C30—H30B108.0
C5—C6—C1119.5 (4)C32—C31—N8106.3 (4)
C5—C6—H6120.2C32—C31—H31126.8
C1—C6—H6120.2N8—C31—H31126.8
O2—C7—O1124.5 (5)C31—C32—N7110.2 (4)
O2—C7—C3118.7 (4)C31—C32—H32124.9
O1—C7—C3116.8 (4)N7—C32—H32124.9
C9—C8—C13121.6 (4)N7—C33—N8110.8 (3)
C9—C8—H8119.2N7—C33—H33124.6
C13—C8—H8119.2N8—C33—H33124.6
C10—C9—C8119.8 (3)C16—C34—N4108.6 (4)
C10—C9—H9120.1C16—C34—H36125.7
C8—C9—H9120.1N4—C34—H36125.7
C9—C10—C11119.6 (4)N4—C35—N1111.0 (4)
C9—C10—H10120.2N4—C35—H324124.5
C11—C10—H10120.2N1—C35—H324124.5
C12—C11—C10120.6 (4)O7—C36—H36A109.5
C12—C11—H11119.7O7—C36—H36B109.5
C10—C11—H11119.7H36A—C36—H36B109.5
C11—C12—C13119.6 (3)O7—C36—H36C109.5
C11—C12—C15118.3 (3)H36A—C36—H36C109.5
C13—C12—C15122.1 (3)H36B—C36—H36C109.5
C8—C13—C12118.8 (3)C35—N1—C16107.4 (3)
C8—C13—C14119.2 (3)C35—N1—C15125.4 (4)
C12—C13—C14122.0 (3)C16—N1—C15127.1 (3)
N2—C14—C13111.9 (3)C17—N2—C18106.6 (3)
N2—C14—H14A109.2C17—N2—C14126.4 (3)
C13—C14—H14A109.2C18—N2—C14127.0 (3)
N2—C14—H14B109.2C17—N3—C19106.0 (3)
C13—C14—H14B109.2C17—N3—Ag1127.2 (3)
H14A—C14—H14B107.9C19—N3—Ag1126.6 (3)
N1—C15—C12112.1 (3)C35—N4—C34106.2 (3)
N1—C15—H15A109.2C35—N4—Ag2124.1 (3)
C12—C15—H15A109.2C34—N4—Ag2129.6 (3)
N1—C15—H15B109.2C20—N5—C21104.6 (3)
C12—C15—H15B109.2C20—N5—Ag1130.7 (3)
H15A—C15—H15B107.9C21—N5—Ag1124.5 (3)
N1—C16—C34106.7 (4)C20—N6—C22107.2 (3)
N1—C16—H35126.7C20—N6—C23126.2 (3)
C34—C16—H35126.7C22—N6—C23126.6 (3)
N3—C17—N2111.2 (3)C33—N7—C32105.6 (3)
N3—C17—H17124.4C33—N7—Ag2126.2 (3)
N2—C17—H17124.4C32—N7—Ag2128.2 (3)
C19—C18—N2106.7 (4)C33—N8—C31107.1 (3)
C19—C18—H18126.6C33—N8—C30125.6 (3)
N2—C18—H18126.6C31—N8—C30127.3 (3)
C18—C19—N3109.5 (4)C4—O3—H4A108 (4)
C18—C19—H19125.3C36—O7—H7A108 (3)
N3—C19—H19125.3H1A—O1W—H1B104 (6)
N5—C20—N6111.1 (3)H2A—O2W—H2B104 (5)
N5—C20—H20124.4H3B—O3W—H3A105 (7)
N6—C20—H20124.4O6'—S1—O4138.1 (6)
C22—C21—N5111.3 (4)O6'—S1—O557.8 (9)
C22—C21—H21124.3O4—S1—O5117.4 (5)
N5—C21—H21124.3O6'—S1—O4'123.3 (13)
C21—C22—N6105.7 (4)O5—S1—O4'140.5 (9)
C21—C22—H22127.1O6'—S1—O652.4 (9)
N6—C22—H22127.1O4—S1—O6111.7 (4)
N6—C23—C24111.8 (3)O5—S1—O6110.1 (5)
N6—C23—H23A109.2O4'—S1—O682.2 (10)
C24—C23—H23A109.2O6'—S1—O5'110.1 (10)
N6—C23—H23B109.2O4—S1—O5'66.9 (7)
C24—C23—H23B109.2O5—S1—O5'55.4 (6)
H23A—C23—H23B107.9O4'—S1—O5'97.3 (10)
C29—C24—C25118.9 (3)O6—S1—O5'154.3 (5)
C29—C24—C23122.8 (3)O6'—S1—C1115.0 (5)
C25—C24—C23118.3 (3)O4—S1—C1106.3 (4)
C26—C25—C24120.6 (4)O5—S1—C1106.6 (2)
C26—C25—H25119.7O4'—S1—C1106.4 (9)
C24—C25—H25119.7O6—S1—C1103.6 (2)
C27—C26—C25120.0 (4)O5'—S1—C1101.2 (5)
C6—C1—C2—C30.3 (5)N4—C35—N1—C15179.0 (3)
S1—C1—C2—C3178.2 (3)C34—C16—N1—C350.3 (5)
C1—C2—C3—C41.2 (5)C34—C16—N1—C15178.8 (4)
C1—C2—C3—C7179.5 (4)C12—C15—N1—C35133.8 (4)
C2—C3—C4—O3178.4 (3)C12—C15—N1—C1647.3 (5)
C7—C3—C4—O30.9 (6)N3—C17—N2—C181.3 (5)
C2—C3—C4—C51.9 (6)N3—C17—N2—C14177.9 (3)
C7—C3—C4—C5178.8 (4)C19—C18—N2—C171.4 (5)
O3—C4—C5—C6179.1 (4)C19—C18—N2—C14177.8 (4)
C3—C4—C5—C61.2 (6)C13—C14—N2—C17151.7 (3)
C4—C5—C6—C10.3 (6)C13—C14—N2—C1827.4 (6)
C2—C1—C6—C51.1 (6)N2—C17—N3—C190.7 (5)
S1—C1—C6—C5177.4 (3)N2—C17—N3—Ag1174.1 (2)
C2—C3—C7—O21.7 (7)C18—C19—N3—C170.2 (5)
C4—C3—C7—O2177.6 (5)C18—C19—N3—Ag1175.0 (3)
C2—C3—C7—O1179.3 (4)N1—C35—N4—C340.2 (4)
C4—C3—C7—O10.1 (6)N1—C35—N4—Ag2178.2 (2)
C13—C8—C9—C100.3 (6)C16—C34—N4—C350.4 (5)
C8—C9—C10—C110.1 (6)C16—C34—N4—Ag2178.3 (3)
C9—C10—C11—C120.0 (6)N6—C20—N5—C210.5 (4)
C10—C11—C12—C130.2 (5)N6—C20—N5—Ag1176.2 (2)
C10—C11—C12—C15179.4 (3)C22—C21—N5—C200.0 (6)
C9—C8—C13—C120.5 (5)C22—C21—N5—Ag1176.9 (3)
C9—C8—C13—C14178.5 (3)N5—C20—N6—C220.7 (4)
C11—C12—C13—C80.4 (5)N5—C20—N6—C23179.3 (3)
C15—C12—C13—C8179.6 (3)C21—C22—N6—C200.7 (5)
C11—C12—C13—C14178.6 (3)C21—C22—N6—C23179.4 (4)
C15—C12—C13—C140.6 (5)C24—C23—N6—C20140.9 (3)
C8—C13—C14—N298.4 (4)C24—C23—N6—C2239.1 (5)
C12—C13—C14—N280.5 (4)N8—C33—N7—C321.0 (4)
C11—C12—C15—N194.9 (4)N8—C33—N7—Ag2179.6 (2)
C13—C12—C15—N184.3 (4)C31—C32—N7—C330.8 (5)
N2—C18—C19—N31.0 (6)C31—C32—N7—Ag2179.3 (3)
N5—C21—C22—N60.4 (6)N7—C33—N8—C310.9 (4)
N6—C23—C24—C2983.6 (4)N7—C33—N8—C30179.8 (3)
N6—C23—C24—C2597.4 (4)C32—C31—N8—C330.3 (5)
C29—C24—C25—C260.0 (5)C32—C31—N8—C30179.7 (4)
C23—C24—C25—C26179.0 (3)C29—C30—N8—C33133.9 (3)
C24—C25—C26—C270.3 (6)C29—C30—N8—C3146.9 (5)
C25—C26—C27—C281.0 (6)C2—C1—S1—O6'154.7 (11)
C26—C27—C28—C291.4 (6)C6—C1—S1—O6'23.8 (11)
C25—C24—C29—C280.4 (5)C2—C1—S1—O433.0 (5)
C23—C24—C29—C28178.5 (3)C6—C1—S1—O4148.5 (5)
C25—C24—C29—C30179.9 (3)C2—C1—S1—O593.0 (5)
C23—C24—C29—C300.9 (5)C6—C1—S1—O585.5 (5)
C27—C28—C29—C241.1 (5)C2—C1—S1—O4'65.1 (11)
C27—C28—C29—C30179.4 (3)C6—C1—S1—O4'116.4 (11)
C24—C29—C30—N884.9 (4)C2—C1—S1—O6150.8 (4)
C28—C29—C30—N895.6 (4)C6—C1—S1—O630.7 (5)
N8—C31—C32—N70.3 (5)C2—C1—S1—O5'36.1 (7)
N1—C16—C34—N40.4 (5)C6—C1—S1—O5'142.4 (7)
N4—C35—N1—C160.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3W0.85 (6)2.35 (5)2.892 (9)122 (4)
O2W—H2A···O10.86 (5)2.52 (6)3.063 (7)122 (6)
O3—H4A···O10.86 (4)1.71 (3)2.486 (6)149 (5)
O7—H7A···O6i0.84 (1)1.88 (2)2.697 (6)164 (4)
O2W—H2B···O1Wii0.86 (5)2.24 (5)2.790 (9)122 (4)
O3W—H3A···O3Wiii0.85 (6)2.52 (4)3.053 (10)122 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C14H14N4)2](C7H4O6S)·CH4O·3H2O
Mr994.58
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9959 (18), 13.947 (3), 16.008 (3)
α, β, γ (°)102.71 (3), 92.37 (3), 91.34 (3)
V3)1956.5 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.18 × 0.15 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.771, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
19149, 8696, 5684
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections8696
No. of parameters569
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.41

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N52.105 (3)Ag2—N42.089 (3)
Ag1—N32.121 (3)Ag2—N72.091 (3)
N5—Ag1—N3176.76 (13)N4—Ag2—N7172.60 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3W0.85 (6)2.35 (5)2.892 (9)122 (4)
O2W—H2A···O10.86 (5)2.52 (6)3.063 (7)122 (6)
O3—H4A···O10.86 (4)1.71 (3)2.486 (6)149 (5)
O7—H7A···O6i0.84 (1)1.88 (2)2.697 (6)164 (4)
O2W—H2B···O1Wii0.86 (5)2.24 (5)2.790 (9)122 (4)
O3W—H3A···O3Wiii0.85 (6)2.52 (4)3.053 (10)122 (2)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Science Foundation of Suihua University (grant No. K081001) for supporting this work.

References

First citationCote, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49–64.  Web of Science CrossRef CAS Google Scholar
First citationCote, A. P. & Shimizu, G. K. H. (2004). Inorg. Chem. 43, 6663–6673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, F.-F., Ma, J.-F., Song, S.-Y., Yang, J., Jia, H.-Q. & Hu, N.-H. (2006). Cryst. Growth Des. 6, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, H.-Y., Wu, H., Ma, J.-F., Song, S.-Y., Yang, J., Liu, Y.-Y. & Su, Z.-M. (2007). Inorg. Chem. 46, 7299–7311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, J.-F., Yang, J., Li, S.-L., Song, S.-Y., Zhang, H.-J., Wang, H.-S. & Yang, K.-Y. (2005). Cryst. Growth Des. 5, 807–812.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1042-m1043
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds