metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1108-m1109

Poly[[di­aqua­(3-carb­­oxy-5-nitro­ben­zo­ato)(μ-5-nitro­benzene-1,3-di­carboxyl­ato)neodymium(III)] 2.5-hydrate]

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 July 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, {[Nd(C8H3NO6)(C8H4NO6)(H2O)2]·2.5H2O}n, the NdII ion is nine-coordinated by seven O atoms from five carboxyl­ate groups and two water mol­ecules. The [Nd(C8H3NO6)(H2O)2]2+ units are bridged by 5-nitro­isophthalate dianions, forming polymeric sheets parallel to the ab plane. The polymeric sheets are linked into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds, and ππ inter­actions [centroid–centroid distance = 3.5533 (11) Å]. The 5-nitro­isophthalate(1−) anion is disordered over three positions with an occupancy ratio of 0.68:0.23:0.09. Two of the uncoordinated water mol­ecules are disordered over two positions, with occupancy ratios of 0.722 (15):0.278 (15) and 0.279 (6):0.221 (6), respectively.

Related literature

For related structures, see: Ye et al. (2008[Ye, J. W., Zhang, J. Y., Ning, G. L., Tian, G., Chen, Y. & Wang, Y. (2008). Cryst. Growth Des. 8, 3098-3106.]); Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Bünzli & Choppin (1989[Bünzli, J. C. & Choppin, G. R. (1989). Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice. Amsterdam: Elsevier.]); Huang et al. (2008[Huang, Y., Yan, B. & Shao, M. (2008). Solid State Sci. 10, 90-98.]); Cui et al. (2002[Cui, Y., Ngo, H. L., White, P. S. & Lin, W. (2002). Chem. Commun. pp. 1666-1667.]); Yan et al. (2005[Yan, B., Bai, Y. Y. & Cgen, Z. X. (2005). J. Mol. Struct. 741, 141-147.]); Ren et al. (2006[Ren, H., Song, T., Xu, J., He, X., Wang, L. & Zhang, P. (2006). Transition Met. Chem. 31, 992-998.]); Li et al. (2005[Li, X. J., Cao, R., Bi, W. H., Wang, Y., Wang, Y. L., Li, X. & Guo, Z. G. (2005). Cryst. Growth Des. 5, 1651-1656.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C8H3NO6)(C8H4NO6)(H2O)2]·2.5H2O

  • Mr = 644.55

  • Triclinic, [P \overline 1]

  • a = 9.5748 (1) Å

  • b = 10.4634 (1) Å

  • c = 13.3285 (2) Å

  • α = 69.279 (1)°

  • β = 71.753 (1)°

  • γ = 66.046 (1)°

  • V = 1118.71 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 100 K

  • 0.35 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.484, Tmax = 0.742

  • 22527 measured reflections

  • 5879 independent reflections

  • 5725 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.057

  • S = 1.21

  • 5879 reflections

  • 398 parameters

  • 115 restraints

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O7 2.3302 (13)
Nd1—O8i 2.4214 (14)
Nd1—O10ii 2.4481 (14)
Nd1—O1W 2.4612 (14)
Nd1—O9iii 2.4708 (13)
Nd1—O2W 2.4775 (15)
Nd1—O2 2.5223 (13)
Nd1—O1 2.5743 (14)
Nd1—O10iii 2.9332 (14)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) x+1, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5A⋯O3Wiv 0.84 1.76 2.596 (5) 178
O1W—H1W1⋯O2v 0.74 1.99 2.731 (3) 175
O1W—H2W1⋯O4WA 0.94 2.00 2.849 (4) 149
O2W—H1W2⋯O4WA 0.84 1.86 2.667 (3) 159
O2W—H2W2⋯O1i 0.82 2.06 2.874 (3) 172
O3W—H1W3⋯O11vi 0.91 2.56 3.246 (3) 132
O3W—H1W3⋯O12vi 0.91 2.05 2.902 (3) 156
O3W—H2W3⋯O9iii 0.96 1.76 2.688 (2) 162
O4WA—H2W4⋯O3W 0.85 2.51 3.118 (6) 130
C12—H12A⋯O1ii 0.95 2.41 3.351 (2) 169
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1; (iii) x+1, y-1, z; (iv) x-1, y, z+1; (v) -x+1, -y+1, -z+1; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The research on the assembly of lanthanide coordination networks has increased over the years (Ye et al., 2008; Eddaoudi et al., 2001). Lanthanide provide opportunities for the discovery of unusual network topologies (Bünzli & Choppin, 1989; Huang et al., 2008; Cui et al., 2002) due to its high and variable coordination numbers and flexible coordination environments (Yan et al., 2005).

5- Nitroisophthalic acid (nia) has two carboxylic groups which may be completely or partially deprotonated and thus produces versatile coordination modes with lanthanide ions. Moreover, the existence of nitro group as an electron-withdrawing group has profound impacts on the electron density of the whole ligand, and thereby different physical phenomena can be produced (Ren et al., 2006; Li et al., 2005). In this paper, we report the crystal structure of a polymeric coordination complex formed from hydrothermal reaction between trivalent neodymium ion and nitroisophthalic acid.

The asymmetric unit of the title polymeric compound is shown in Fig. 1. In the crystal structure, each NdIII ion adopts a nine-coordination environment being coordinated by two O atoms from two water molecules and seven O atoms from five carboxylate groups. The Nd—O distances range from 2.3302 (13) to 2.9332 (14) Å for carboxylate groups and 2.4612 (14) and 2.4775 (15) Å, respectively for O1W and O2W (Table 1). The nitro group attached to the C1-C6 benzene ring is slightly twisted, with a dihedral angle of 12.2 (3)° for the major disorder component A [ 9(1)° for B and 3(1)° for C]. The nitro group attached to the C9-C14 benzene ring is twisted by a dihedral angle of 21.2 (1)°. The dihedral angles between C1-C6 benzene rings and planes of carboxyl groups in disorder components A, B and C are 5.8 (5)°, 9(1)° and 29 (1)°, respectively. The adjacent [Nd(C8H3NO6)(H2O)2]2+ units are bridged by 5-nitroisophthalate dianions to form polymeric sheets parallel to the ab plane (Fig. 2).

The polymeric sheets are linked into a three-dimensional network (Fig. 3) by O—H···O and C—H···O hydrogen bonds (Table 2). There also exist a ππ interaction between the C9–C14 benzene rings at (x, y, z) and (-x, 2-y, 1-z), with a centroid-to-centroid distance of 3.5533 (11) Å.

Related literature top

For related structures, see: Ye et al. (2008); Eddaoudi et al. (2001); Bünzli & Choppin (1989); Huang et al. (2008); Cui et al. (2002); Yan et al. (2005); Ren et al. (2006); Li et al. (2005). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 5-nitroisophthalic acid (0.4243 g, 2.0 mmol), sodium hydroxide (0.140 g, 3.5 mmol) and distilled water (30 ml) was heated till boiling. The solution was left to cool to room temperature before neodymium(III) nitrate hexahydrate salt, Nd(NO3).6H2O (0.4380 g, 1.0 mmol) was added to it. The pH of the mixture was controlled to be between 3–4 by adding 1 M NaOH or 1 M HNO3. Subsequently the solution was poured into a 40 ml Teflon tube, which was then sealed and heated at 403 K for 3 d. Upon cooling to room temperature, light purple crystals of the title compound were obtained which were filtered, washed with distilled water and left to dry in air.

Refinement top

The 5-nitroisophthalate(1-) anion is disordered over three positions with an occupancy ratio of 0.683 (7):0.234 (7):0.087 (7) which was fixed at 0.68:0.23:0.09 for the final refinement. The two minor disorder components B and C were refined isotropically; a common Uiso was used for the disorder component C. In all disorder components, the C1—C6 benzene ring is constrained to a regular hexagon with d = 1.39 Å. Atom O4W and hemihydrate O5W are also disordered over two positions, with occupancies of 0.722 (15) and 0.278 (15), and 0.279 (6) and 0.221 (6) respectively. For the disordered 5-nitroisophthalate(1-) anion, similarity restraints were applied. The O atoms of the uncoordinated water molecules are restrained so that their Uij components approximate to isotropic behavior. H atoms for O1W, O2W, O3W and O4WB were located in a difference Fourier map and refined as riding with the parent atom with Uiso(H) = 1.5Ueq(O). The rest of H atoms were positioned geometrically and refined using a riding model, with C-H = 0.95 Å, O-H = 0.84 Å and Uiso = 1.2eq(C) and 1.5eq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. All disorder components are shown. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the polymeric sheet, showing the coordination environment of NdIII ion. Displacement ellipsoids are drawn at the 50% probability level. Only major disorder components are shown. Uncoordinated water molecules and H atoms have been omitted for clarity. Symmetry codes: (A) -x, 1-y, 1-z ; (B) -x, 2-y, 1-z; (c) 1+x, -1+y, z.
[Figure 3] Fig. 3. The crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines. Only major disorder components are shown.
Poly[[diaqua(3-carboxy-5-nitrobenzoato)(µ-5-nitrobenzene-1,3- dicarboxylato)neodymium(III)] 2.5-hydrate] top
Crystal data top
[Nd(C8H3NO6)(C8H4NO6)(H2O)2]·2.5H2OZ = 2
Mr = 644.55F(000) = 636
Triclinic, P1Dx = 1.913 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5748 (1) ÅCell parameters from 9930 reflections
b = 10.4634 (1) Åθ = 2.7–29.0°
c = 13.3285 (2) ŵ = 2.41 mm1
α = 69.279 (1)°T = 100 K
β = 71.753 (1)°Plate, purple
γ = 66.046 (1)°0.35 × 0.24 × 0.13 mm
V = 1118.71 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5879 independent reflections
Radiation source: fine-focus sealed tube5725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.484, Tmax = 0.742k = 1414
22527 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5091P]
where P = (Fo2 + 2Fc2)/3
5879 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 1.18 e Å3
115 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Nd(C8H3NO6)(C8H4NO6)(H2O)2]·2.5H2Oγ = 66.046 (1)°
Mr = 644.55V = 1118.71 (2) Å3
Triclinic, P1Z = 2
a = 9.5748 (1) ÅMo Kα radiation
b = 10.4634 (1) ŵ = 2.41 mm1
c = 13.3285 (2) ÅT = 100 K
α = 69.279 (1)°0.35 × 0.24 × 0.13 mm
β = 71.753 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5879 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5725 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.742Rint = 0.019
22527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018115 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.21Δρmax = 1.18 e Å3
5879 reflectionsΔρmin = 0.77 e Å3
398 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd10.285572 (9)0.468414 (9)0.486911 (7)0.01037 (4)
O3A0.5272 (5)0.1271 (4)0.9533 (3)0.0330 (9)0.68
O4A0.3769 (4)0.1558 (3)1.1135 (2)0.0463 (8)0.68
O5A0.1663 (5)0.1114 (5)1.1553 (3)0.0263 (8)0.68
H5A0.26010.13011.18750.039*0.68
O6A0.2644 (3)0.3037 (5)1.0252 (3)0.0605 (13)0.68
N1A0.4039 (6)0.0919 (4)1.0164 (3)0.0297 (7)0.68
C1A0.0383 (3)0.2754 (4)0.8934 (3)0.0205 (8)0.68
H1AA0.04390.35720.86540.025*0.68
C2A0.0078 (3)0.1835 (5)0.9962 (3)0.0198 (8)0.68
C3A0.1281 (4)0.0639 (4)1.0372 (2)0.0238 (9)0.68
H3AA0.10720.00111.10750.029*0.68
C4A0.2789 (4)0.0361 (3)0.9754 (3)0.0245 (8)0.68
C5A0.3094 (3)0.1279 (4)0.8726 (3)0.0189 (9)0.68
H5AA0.41250.10890.83040.023*0.68
C6A0.1891 (4)0.2476 (4)0.8316 (3)0.0165 (13)0.68
C15A0.1548 (5)0.2079 (7)1.0602 (3)0.0268 (9)0.68
O3B0.4896 (15)0.1413 (17)0.9604 (13)0.027 (3)*0.23
O4B0.3076 (14)0.1937 (12)1.0907 (9)0.056 (3)*0.23
O5B0.1948 (16)0.1468 (13)1.1445 (11)0.025 (3)*0.23
H5B0.28520.17421.18140.037*0.23
O6B0.2641 (10)0.3699 (8)1.0410 (7)0.0257 (18)*0.23
N1B0.3557 (15)0.1115 (12)1.0079 (10)0.040 (3)*0.23
C1B0.0367 (14)0.3066 (10)0.8974 (11)0.016 (3)*0.23
H1BA0.03490.40040.87370.019*0.23
C2B0.0066 (12)0.2128 (14)0.9957 (11)0.038 (5)*0.23
C3B0.0982 (14)0.0756 (13)1.0304 (10)0.039 (5)*0.23
H3BA0.06860.01151.09760.046*0.23
C4B0.2463 (12)0.0322 (10)0.9668 (10)0.021 (3)*0.23
C5B0.2896 (12)0.1260 (15)0.8684 (10)0.028 (4)*0.23
H5BA0.39070.09630.82490.033*0.23
C6B0.1848 (16)0.2632 (14)0.8337 (10)0.016 (4)*0.23
C15B0.1695 (13)0.2567 (12)1.0630 (10)0.019 (3)*0.23
O3C0.449 (2)0.130 (3)0.9824 (19)0.0208 (13)*0.09
O4C0.272 (2)0.1538 (18)1.1276 (12)0.0208 (13)*0.09
O5C0.2380 (19)0.2386 (18)1.1423 (12)0.0208 (13)*0.09
H5C0.33020.26751.18730.025*0.09
O6C0.2201 (18)0.4585 (14)1.0575 (13)0.0208 (13)*0.09
N1C0.318 (2)0.0826 (18)1.0374 (14)0.0208 (13)*0.09
C1C0.0294 (19)0.3429 (15)0.9028 (13)0.0208 (13)*0.09
H1CA0.03550.43820.87400.025*0.09
C2C0.0198 (15)0.2637 (16)1.0071 (12)0.0208 (13)*0.09
C3C0.0750 (18)0.1244 (16)1.0493 (11)0.0208 (13)*0.09
H3CA0.04140.07021.12060.025*0.09
C4C0.2191 (19)0.0642 (16)0.9873 (14)0.0208 (13)*0.09
C5C0.2683 (19)0.143 (2)0.8830 (15)0.0208 (13)*0.09
H5CA0.36680.10230.84060.025*0.09
C6C0.173 (2)0.283 (2)0.8408 (12)0.0208 (13)*0.09
C15C0.174 (2)0.3312 (17)1.0721 (15)0.0208 (13)*0.09
O10.11719 (16)0.45727 (15)0.68090 (11)0.0170 (3)
O20.36376 (16)0.31566 (15)0.66785 (11)0.0165 (3)
O70.05148 (16)0.65931 (14)0.46945 (12)0.0176 (3)
O80.19586 (17)0.73727 (15)0.45331 (13)0.0209 (3)
O90.49580 (16)1.26834 (15)0.42188 (12)0.0188 (3)
O100.37511 (16)1.38214 (14)0.45852 (11)0.0157 (3)
O110.1860 (2)1.24682 (18)0.22910 (16)0.0325 (4)
O120.32156 (17)1.02380 (18)0.29539 (14)0.0253 (3)
N20.19668 (19)1.12233 (19)0.28241 (14)0.0178 (3)
C70.2251 (2)0.3495 (2)0.72073 (15)0.0155 (3)
C80.0736 (2)0.75718 (19)0.44717 (14)0.0122 (3)
C90.0762 (2)0.91156 (18)0.41124 (14)0.0107 (3)
C100.2178 (2)1.02243 (19)0.42723 (14)0.0115 (3)
H10A0.31221.00090.45540.014*
C110.2213 (2)1.16466 (19)0.40205 (14)0.0113 (3)
C120.0849 (2)1.19940 (19)0.35355 (14)0.0124 (3)
H12A0.08611.29630.33430.015*
C130.0528 (2)1.0867 (2)0.33446 (14)0.0129 (3)
C140.0619 (2)0.94284 (19)0.36509 (14)0.0124 (3)
H14A0.15930.86810.35490.015*
C160.3728 (2)1.27944 (19)0.42875 (14)0.0127 (3)
O1W0.39421 (17)0.62127 (17)0.31765 (11)0.0214 (3)
H1W10.45950.64220.31810.032*
H2W10.42070.60700.24750.032*
O2W0.20344 (18)0.4620 (2)0.33051 (13)0.0285 (4)
H1W20.25990.46480.26740.043*
H2W20.11460.47850.32450.043*
O3W0.5412 (2)0.1731 (2)0.24946 (15)0.0377 (4)
H1W30.47420.13640.24250.057*
H2W30.52210.19030.31930.057*
O4WA0.4139 (3)0.5063 (6)0.1473 (2)0.0342 (12)0.722 (15)
H1W40.37800.56600.09130.051*0.722 (15)
H2W40.47160.42750.13010.051*0.722 (15)
O4WB0.4055 (9)0.4415 (15)0.1312 (8)0.037 (3)0.278 (15)
H3W40.37040.47570.08090.056*0.278 (15)
H4W40.43530.35610.14120.056*0.278 (15)
O5WA0.6107 (14)0.5930 (14)0.0951 (10)0.082 (4)0.279 (6)
H1W50.70590.57140.06300.123*0.279 (6)
H2W50.58610.51690.11550.123*0.279 (6)
O5WB0.9195 (14)0.4364 (12)0.0923 (8)0.051 (3)0.221 (6)
H3W50.86150.48640.13750.077*0.221 (6)
H4W51.00370.38350.11520.077*0.221 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00707 (6)0.00691 (6)0.01558 (6)0.00155 (4)0.00089 (3)0.00326 (4)
O3A0.038 (2)0.0212 (16)0.0264 (15)0.0010 (16)0.0073 (15)0.0004 (11)
O4A0.064 (2)0.0291 (15)0.0201 (12)0.0069 (14)0.0055 (13)0.0107 (10)
O5A0.0263 (18)0.037 (2)0.0144 (13)0.0199 (18)0.0051 (12)0.0027 (14)
O6A0.0223 (14)0.103 (3)0.0277 (14)0.0250 (18)0.0064 (11)0.0225 (18)
N1A0.043 (2)0.0183 (15)0.0194 (14)0.0077 (16)0.0092 (15)0.0041 (11)
C1A0.0177 (17)0.027 (2)0.0192 (16)0.0148 (15)0.0041 (11)0.0003 (16)
C2A0.0189 (16)0.034 (2)0.0095 (14)0.0193 (14)0.0011 (10)0.0016 (13)
C3A0.036 (2)0.0240 (19)0.0128 (14)0.0182 (16)0.0061 (15)0.0037 (11)
C4A0.035 (2)0.0231 (19)0.0186 (16)0.0142 (16)0.0103 (16)0.0006 (12)
C5A0.0233 (17)0.0150 (17)0.0155 (15)0.0079 (14)0.0039 (13)0.0010 (11)
C6A0.018 (2)0.019 (2)0.0147 (17)0.0128 (14)0.0026 (10)0.0009 (12)
C15A0.0245 (18)0.044 (3)0.0150 (16)0.0223 (19)0.0037 (12)0.0009 (17)
O10.0127 (6)0.0151 (6)0.0183 (6)0.0033 (5)0.0015 (5)0.0018 (5)
O20.0112 (6)0.0155 (6)0.0192 (6)0.0062 (5)0.0027 (5)0.0014 (5)
O70.0123 (6)0.0091 (6)0.0256 (7)0.0005 (5)0.0037 (5)0.0026 (5)
O80.0148 (7)0.0110 (6)0.0374 (8)0.0051 (5)0.0068 (6)0.0047 (6)
O90.0096 (6)0.0161 (7)0.0311 (7)0.0019 (5)0.0015 (5)0.0117 (6)
O100.0170 (6)0.0099 (6)0.0203 (6)0.0039 (5)0.0009 (5)0.0072 (5)
O110.0217 (8)0.0195 (8)0.0512 (10)0.0135 (6)0.0080 (7)0.0089 (7)
O120.0092 (6)0.0269 (8)0.0378 (8)0.0053 (6)0.0001 (6)0.0111 (7)
N20.0120 (7)0.0190 (8)0.0244 (8)0.0080 (6)0.0022 (6)0.0099 (6)
C70.0139 (8)0.0152 (9)0.0172 (8)0.0072 (7)0.0030 (6)0.0014 (6)
C80.0118 (8)0.0086 (7)0.0145 (7)0.0024 (6)0.0007 (6)0.0040 (6)
C90.0091 (7)0.0079 (7)0.0143 (7)0.0014 (6)0.0028 (6)0.0030 (6)
C100.0081 (7)0.0107 (8)0.0150 (7)0.0027 (6)0.0014 (6)0.0039 (6)
C110.0085 (7)0.0097 (8)0.0148 (7)0.0014 (6)0.0018 (6)0.0048 (6)
C120.0111 (8)0.0109 (8)0.0155 (7)0.0041 (6)0.0008 (6)0.0048 (6)
C130.0094 (8)0.0139 (8)0.0168 (7)0.0057 (6)0.0003 (6)0.0059 (6)
C140.0086 (7)0.0121 (8)0.0155 (7)0.0023 (6)0.0013 (6)0.0048 (6)
C160.0113 (8)0.0089 (8)0.0155 (7)0.0024 (6)0.0001 (6)0.0038 (6)
O1W0.0170 (7)0.0319 (8)0.0164 (6)0.0145 (6)0.0027 (5)0.0008 (6)
O2W0.0138 (7)0.0522 (11)0.0270 (7)0.0106 (7)0.0007 (6)0.0222 (7)
O3W0.0305 (9)0.0669 (13)0.0304 (8)0.0311 (9)0.0039 (7)0.0205 (9)
O4WA0.0301 (14)0.046 (3)0.0198 (11)0.0101 (13)0.0026 (9)0.0065 (11)
O4WB0.027 (3)0.045 (5)0.030 (3)0.013 (3)0.005 (3)0.005 (4)
O5WA0.072 (6)0.091 (7)0.103 (7)0.024 (5)0.012 (5)0.058 (6)
O5WB0.063 (6)0.052 (6)0.045 (5)0.022 (5)0.011 (4)0.017 (4)
Geometric parameters (Å, º) top
Nd1—O72.3302 (13)C1C—C2C1.39
Nd1—O8i2.4214 (14)C1C—C6C1.39
Nd1—O10ii2.4481 (14)C1C—H1CA0.95
Nd1—O1W2.4612 (14)C2C—C3C1.39
Nd1—O9iii2.4708 (13)C2C—C15C1.486 (13)
Nd1—O2W2.4775 (15)C3C—C4C1.39
Nd1—O22.5223 (13)C3C—H3CA0.95
Nd1—O12.5743 (14)C4C—C5C1.39
Nd1—C72.8822 (18)C5C—C6C1.39
Nd1—O10iii2.9332 (14)C5C—H5CA0.95
Nd1—C16iii3.0749 (18)C6C—C71.512 (12)
O3A—N1A1.218 (6)O1—C71.263 (2)
O4A—N1A1.228 (4)O2—C71.263 (2)
O5A—C15A1.317 (5)O7—C81.258 (2)
O5A—H5A0.84O8—C81.243 (2)
O6A—C15A1.202 (6)O8—Nd1i2.4214 (14)
N1A—C4A1.454 (4)O9—C161.263 (2)
C1A—C2A1.39O9—Nd1iv2.4708 (13)
C1A—C6A1.39O10—C161.261 (2)
C1A—H1AA0.95O10—Nd1ii2.4482 (14)
C2A—C3A1.39O10—Nd1iv2.9332 (14)
C2A—C15A1.489 (4)O11—N21.222 (2)
C3A—C4A1.39O12—N21.235 (2)
C3A—H3AA0.95N2—C131.468 (2)
C4A—C5A1.39C8—C91.505 (2)
C5A—C6A1.39C9—C141.391 (2)
C5A—H5AA0.95C9—C101.395 (2)
C6A—C71.518 (3)C10—C111.393 (2)
O3B—N1B1.203 (14)C10—H10A0.95
O4B—N1B1.225 (12)C11—C121.395 (2)
O5B—C15B1.319 (13)C11—C161.496 (2)
O5B—H5B0.84C12—C131.390 (2)
O6B—C15B1.166 (12)C12—H12A0.95
N1B—C4B1.469 (11)C13—C141.386 (3)
C1B—C2B1.39C14—H14A0.95
C1B—C6B1.39C16—Nd1iv3.0749 (18)
C1B—H1BA0.95O1W—H1W10.74
C2B—C3B1.39O1W—H2W10.94
C2B—C15B1.511 (11)O2W—H1W20.84
C3B—C4B1.39O2W—H2W20.82
C3B—H3BA0.95O3W—H1W30.91
C4B—C5B1.39O3W—H2W30.96
C5B—C6B1.39O4WA—H1W40.85
C5B—H5BA0.95O4WA—H2W40.85
C6B—C71.480 (9)O4WB—H3W40.75
O3C—N1C1.239 (16)O4WB—H4W40.79
O4C—N1C1.223 (15)O5WA—H1W50.85
O5C—C15C1.294 (15)O5WA—H2W50.85
O5C—H5C0.90O5WB—H3W50.85
O6C—C15C1.184 (16)O5WB—H4W50.85
N1C—C4C1.481 (13)
O7—Nd1—O8i100.76 (5)C5B—C6B—C1B120.0
O7—Nd1—O10ii88.82 (5)C5B—C6B—C7118.1 (8)
O8i—Nd1—O10ii145.95 (5)C1B—C6B—C7121.1 (8)
O7—Nd1—O1W84.42 (5)O6B—C15B—O5B124.3 (11)
O8i—Nd1—O1W139.99 (5)O6B—C15B—C2B124.3 (10)
O10ii—Nd1—O1W72.98 (5)O5B—C15B—C2B111.2 (10)
O7—Nd1—O9iii151.36 (5)C15C—O5C—H5C121.2
O8i—Nd1—O9iii73.06 (5)O4C—N1C—O3C121.9 (17)
O10ii—Nd1—O9iii112.18 (5)O4C—N1C—C4C121.7 (16)
O1W—Nd1—O9iii83.59 (5)O3C—N1C—C4C116.4 (15)
O7—Nd1—O2W74.02 (5)C2C—C1C—C6C120.0
O8i—Nd1—O2W72.51 (6)C2C—C1C—H1CA120.0
O10ii—Nd1—O2W141.22 (5)C6C—C1C—H1CA120.0
O1W—Nd1—O2W70.97 (5)C3C—C2C—C1C120.0
O9iii—Nd1—O2W77.50 (5)C3C—C2C—C15C121.1 (10)
O7—Nd1—O2123.94 (5)C1C—C2C—C15C118.9 (10)
O8i—Nd1—O272.14 (5)C4C—C3C—C2C120.0
O10ii—Nd1—O275.40 (5)C4C—C3C—H3CA120.0
O1W—Nd1—O2136.59 (5)C2C—C3C—H3CA120.0
O9iii—Nd1—O281.61 (5)C3C—C4C—C5C120.0
O2W—Nd1—O2142.83 (6)C3C—C4C—N1C117.9 (11)
O7—Nd1—O173.37 (5)C5C—C4C—N1C122.1 (11)
O8i—Nd1—O170.84 (5)C6C—C5C—C4C120.0
O10ii—Nd1—O181.06 (5)C6C—C5C—H5CA120.0
O1W—Nd1—O1146.05 (5)C4C—C5C—H5CA120.0
O9iii—Nd1—O1127.22 (5)C5C—C6C—C1C120.0
O2W—Nd1—O1124.29 (5)C5C—C6C—C7115.6 (10)
O2—Nd1—O151.38 (4)C1C—C6C—C7123.6 (10)
O7—Nd1—C799.34 (5)O6C—C15C—O5C128.0 (16)
O8i—Nd1—C765.51 (5)O6C—C15C—C2C118.1 (14)
O10ii—Nd1—C780.77 (5)O5C—C15C—C2C113.8 (14)
O1W—Nd1—C7153.43 (5)C7—O1—Nd190.75 (11)
O9iii—Nd1—C7102.98 (5)C7—O2—Nd193.16 (11)
O2W—Nd1—C7135.46 (6)C8—O7—Nd1171.21 (13)
O2—Nd1—C725.94 (5)C8—O8—Nd1i136.37 (12)
O1—Nd1—C725.99 (5)C16—O9—Nd1iv106.33 (11)
O7—Nd1—O10iii146.58 (4)C16—O10—Nd1ii160.39 (12)
O8i—Nd1—O10iii112.58 (4)C16—O10—Nd1iv84.27 (11)
O10ii—Nd1—O10iii64.92 (5)Nd1ii—O10—Nd1iv115.08 (5)
O1W—Nd1—O10iii68.84 (4)O11—N2—O12124.08 (17)
O9iii—Nd1—O10iii47.27 (4)O11—N2—C13118.38 (17)
O2W—Nd1—O10iii113.16 (4)O12—N2—C13117.54 (16)
O2—Nd1—O10iii71.17 (4)O2—C7—O1122.11 (17)
O1—Nd1—O10iii119.02 (4)O2—C7—C6B120.1 (5)
C7—Nd1—O10iii96.50 (5)O1—C7—C6B117.7 (5)
O7—Nd1—C16iii159.88 (5)O2—C7—C6C125.0 (7)
O8i—Nd1—C16iii92.18 (5)O1—C7—C6C112.3 (7)
O10ii—Nd1—C16iii88.96 (5)O2—C7—C6A117.2 (2)
O1W—Nd1—C16iii75.82 (5)O1—C7—C6A120.5 (2)
O9iii—Nd1—C16iii23.21 (5)O2—C7—Nd160.91 (9)
O2W—Nd1—C16iii95.64 (5)O1—C7—Nd163.26 (10)
O2—Nd1—C16iii74.63 (5)C6B—C7—Nd1166.1 (8)
O1—Nd1—C16iii125.93 (4)C6C—C7—Nd1171.4 (11)
C7—Nd1—C16iii100.03 (5)C6A—C7—Nd1160.6 (3)
O10iii—Nd1—C16iii24.08 (4)O8—C8—O7125.51 (17)
C15A—O5A—H5A109.5O8—C8—C9117.18 (16)
O3A—N1A—O4A124.8 (4)O7—C8—C9117.30 (16)
O3A—N1A—C4A118.3 (3)C14—C9—C10120.32 (16)
O4A—N1A—C4A116.9 (4)C14—C9—C8120.22 (15)
C2A—C1A—C6A120.0C10—C9—C8119.44 (16)
C2A—C1A—H1AA120.0C11—C10—C9120.31 (16)
C6A—C1A—H1AA120.0C11—C10—H10A119.8
C3A—C2A—C1A120.0C9—C10—H10A119.8
C3A—C2A—C15A119.6 (3)C10—C11—C12120.42 (16)
C1A—C2A—C15A120.3 (3)C10—C11—C16119.21 (16)
C4A—C3A—C2A120.0C12—C11—C16120.37 (16)
C4A—C3A—H3AA120.0C13—C12—C11117.41 (16)
C2A—C3A—H3AA120.0C13—C12—H12A121.3
C3A—C4A—C5A120.0C11—C12—H12A121.3
C3A—C4A—N1A120.1 (3)C14—C13—C12123.58 (16)
C5A—C4A—N1A119.9 (3)C14—C13—N2118.54 (16)
C4A—C5A—C6A120.0C12—C13—N2117.84 (16)
C4A—C5A—H5AA120.0C13—C14—C9117.75 (16)
C6A—C5A—H5AA120.0C13—C14—H14A121.1
C5A—C6A—C1A120.0C9—C14—H14A121.1
C5A—C6A—C7119.4 (2)O10—C16—O9122.04 (17)
C1A—C6A—C7120.6 (2)O10—C16—C11119.94 (16)
O6A—C15A—O5A124.1 (4)O9—C16—C11118.02 (16)
O6A—C15A—C2A122.3 (3)O10—C16—Nd1iv71.65 (10)
O5A—C15A—C2A113.5 (4)O9—C16—Nd1iv50.45 (9)
C15B—O5B—H5B109.5C11—C16—Nd1iv167.91 (13)
O3B—N1B—O4B123.1 (13)Nd1—O1W—H1W1118.6
O3B—N1B—C4B118.3 (12)Nd1—O1W—H2W1125.6
O4B—N1B—C4B118.5 (12)H1W1—O1W—H2W1102.4
C2B—C1B—C6B120.0Nd1—O2W—H1W2123.6
C2B—C1B—H1BA120.0Nd1—O2W—H2W2127.6
C6B—C1B—H1BA120.0H1W2—O2W—H2W2106.9
C3B—C2B—C1B120.0H1W3—O3W—H2W3115.1
C3B—C2B—C15B119.6 (8)H1W4—O4WA—H2W4107.4
C1B—C2B—C15B120.3 (8)H1W4—O4WA—H3W454.4
C2B—C3B—C4B120.0H2W4—O4WA—H3W464.4
C2B—C3B—H3BA120.0H1W4—O4WB—H2W497.0
C4B—C3B—H3BA120.0H1W4—O4WB—H3W460.6
C3B—C4B—C5B120.0H2W4—O4WB—H3W4123.4
C3B—C4B—N1B118.5 (9)H1W4—O4WB—H4W4164.0
C5B—C4B—N1B121.5 (9)H2W4—O4WB—H4W479.4
C6B—C5B—C4B120.0H3W4—O4WB—H4W4108.3
C6B—C5B—H5BA120.0H1W5—O5WA—H2W5107.4
C4B—C5B—H5BA120.0H3W5—O5WB—H4W5107.7
C6A—C1A—C2A—C3A0.0C5B—C6B—C7—Nd173 (2)
C6A—C1A—C2A—C15A176.5 (5)C1B—C6B—C7—Nd196 (2)
C1A—C2A—C3A—C4A0.0C5C—C6C—C7—O225.6 (17)
C15A—C2A—C3A—C4A176.6 (5)C1C—C6C—C7—O2164.7 (10)
C2A—C3A—C4A—C5A0.0C5C—C6C—C7—O1163.1 (9)
C2A—C3A—C4A—N1A177.8 (4)C1C—C6C—C7—O16.7 (19)
O3A—N1A—C4A—C3A167.1 (4)C5C—C6C—C7—C6B33 (8)
O4A—N1A—C4A—C3A13.6 (6)C1C—C6C—C7—C6B137 (10)
O3A—N1A—C4A—C5A10.7 (6)C5C—C6C—C7—C6A36 (3)
O4A—N1A—C4A—C5A168.6 (4)C1C—C6C—C7—C6A134 (5)
C3A—C4A—C5A—C6A0.0C5A—C6A—C7—O23.6 (4)
N1A—C4A—C5A—C6A177.8 (4)C1A—C6A—C7—O2178.3 (3)
C4A—C5A—C6A—C1A0.0C5A—C6A—C7—O1178.6 (2)
C4A—C5A—C6A—C7178.2 (5)C1A—C6A—C7—O13.2 (5)
C2A—C1A—C6A—C5A0.0C5A—C6A—C7—C6B117 (7)
C2A—C1A—C6A—C7178.2 (5)C1A—C6A—C7—C6B61 (7)
C3A—C2A—C15A—O6A174.7 (5)C5A—C6A—C7—C6C122 (4)
C1A—C2A—C15A—O6A1.8 (8)C1A—C6A—C7—C6C56 (4)
C3A—C2A—C15A—O5A2.6 (6)C5A—C6A—C7—Nd182.8 (6)
C1A—C2A—C15A—O5A179.2 (4)C1A—C6A—C7—Nd199.0 (5)
C6B—C1B—C2B—C3B0.0O7—Nd1—C7—O2162.80 (11)
C6B—C1B—C2B—C15B177.4 (17)O8i—Nd1—C7—O299.56 (12)
C1B—C2B—C3B—C4B0.0O10ii—Nd1—C7—O275.54 (11)
C15B—C2B—C3B—C4B177.4 (17)O1W—Nd1—C7—O266.56 (17)
C2B—C3B—C4B—C5B0.0O9iii—Nd1—C7—O235.26 (12)
C2B—C3B—C4B—N1B177.8 (12)O2W—Nd1—C7—O2120.53 (12)
O3B—N1B—C4B—C3B170.2 (14)O1—Nd1—C7—O2164.04 (19)
O4B—N1B—C4B—C3B7.7 (19)O10iii—Nd1—C7—O212.32 (12)
O3B—N1B—C4B—C5B8 (2)C16iii—Nd1—C7—O211.75 (12)
O4B—N1B—C4B—C5B174.5 (13)O7—Nd1—C7—O11.25 (12)
C3B—C4B—C5B—C6B0.0O8i—Nd1—C7—O196.39 (12)
N1B—C4B—C5B—C6B177.8 (12)O10ii—Nd1—C7—O188.51 (11)
C4B—C5B—C6B—C1B0.0O1W—Nd1—C7—O197.48 (15)
C4B—C5B—C6B—C7169.7 (17)O9iii—Nd1—C7—O1160.70 (11)
C2B—C1B—C6B—C5B0.0O2W—Nd1—C7—O175.42 (13)
C2B—C1B—C6B—C7169.3 (17)O2—Nd1—C7—O1164.04 (19)
C3B—C2B—C15B—O6B178.9 (11)O10iii—Nd1—C7—O1151.72 (11)
C1B—C2B—C15B—O6B4 (2)C16iii—Nd1—C7—O1175.79 (11)
C3B—C2B—C15B—O5B6.3 (17)O7—Nd1—C7—C6B99 (2)
C1B—C2B—C15B—O5B171.1 (13)O8i—Nd1—C7—C6B1 (2)
C6C—C1C—C2C—C3C0.0O10ii—Nd1—C7—C6B174 (2)
C6C—C1C—C2C—C15C179.4 (19)O1W—Nd1—C7—C6B165 (2)
C1C—C2C—C3C—C4C0.0O9iii—Nd1—C7—C6B63 (2)
C15C—C2C—C3C—C4C179 (2)O2W—Nd1—C7—C6B22 (2)
C2C—C3C—C4C—C5C0.0O2—Nd1—C7—C6B98 (2)
C2C—C3C—C4C—N1C178 (2)O1—Nd1—C7—C6B98 (2)
O4C—N1C—C4C—C3C5 (3)O10iii—Nd1—C7—C6B111 (2)
O3C—N1C—C4C—C3C176 (2)C16iii—Nd1—C7—C6B86 (2)
O4C—N1C—C4C—C5C177 (2)O7—Nd1—C7—C6A107.5 (5)
O3C—N1C—C4C—C5C2 (3)O8i—Nd1—C7—C6A9.9 (5)
C3C—C4C—C5C—C6C0.0O10ii—Nd1—C7—C6A165.2 (5)
N1C—C4C—C5C—C6C178 (2)O1W—Nd1—C7—C6A156.2 (5)
C4C—C5C—C6C—C1C0.0O9iii—Nd1—C7—C6A54.4 (5)
C4C—C5C—C6C—C7170 (2)O2W—Nd1—C7—C6A30.9 (5)
C2C—C1C—C6C—C5C0.0O2—Nd1—C7—C6A89.7 (5)
C2C—C1C—C6C—C7169 (2)O1—Nd1—C7—C6A106.3 (5)
C3C—C2C—C15C—O6C149.3 (18)O10iii—Nd1—C7—C6A102.0 (5)
C1C—C2C—C15C—O6C30 (3)C16iii—Nd1—C7—C6A77.9 (5)
C3C—C2C—C15C—O5C28 (3)Nd1i—O8—C8—O74.0 (3)
C1C—C2C—C15C—O5C152.6 (16)Nd1i—O8—C8—C9175.30 (12)
O7—Nd1—O1—C7178.71 (12)O8—C8—C9—C14156.86 (17)
O8i—Nd1—O1—C773.22 (11)O7—C8—C9—C1423.8 (2)
O10ii—Nd1—O1—C787.26 (11)O8—C8—C9—C1024.8 (2)
O1W—Nd1—O1—C7127.43 (12)O7—C8—C9—C10154.54 (17)
O9iii—Nd1—O1—C723.86 (13)C14—C9—C10—C113.1 (3)
O2W—Nd1—O1—C7124.75 (12)C8—C9—C10—C11175.22 (15)
O2—Nd1—O1—C78.85 (11)C9—C10—C11—C124.5 (3)
O10iii—Nd1—O1—C732.57 (12)C9—C10—C11—C16174.87 (16)
C16iii—Nd1—O1—C75.12 (13)C10—C11—C12—C131.6 (3)
O7—Nd1—O2—C720.60 (13)C16—C11—C12—C13177.77 (16)
O8i—Nd1—O2—C770.53 (12)C11—C12—C13—C142.8 (3)
O10ii—Nd1—O2—C799.01 (12)C11—C12—C13—N2179.38 (16)
O1W—Nd1—O2—C7143.33 (11)O11—N2—C13—C14160.22 (19)
O9iii—Nd1—O2—C7145.35 (12)O12—N2—C13—C1419.7 (3)
O2W—Nd1—O2—C789.17 (13)O11—N2—C13—C1221.9 (3)
O1—Nd1—O2—C78.87 (11)O12—N2—C13—C12158.19 (17)
O10iii—Nd1—O2—C7167.05 (12)C12—C13—C14—C94.1 (3)
C16iii—Nd1—O2—C7168.00 (12)N2—C13—C14—C9178.07 (16)
Nd1—O2—C7—O116.8 (2)C10—C9—C14—C131.1 (3)
Nd1—O2—C7—C6B164.1 (9)C8—C9—C14—C13179.40 (16)
Nd1—O2—C7—C6C172.6 (13)Nd1ii—O10—C16—O9173.8 (3)
Nd1—O2—C7—C6A158.1 (3)Nd1iv—O10—C16—O92.76 (17)
Nd1—O1—C7—O216.47 (19)Nd1ii—O10—C16—C115.2 (5)
Nd1—O1—C7—C6B164.4 (9)Nd1iv—O10—C16—C11176.24 (15)
Nd1—O1—C7—C6C171.9 (12)Nd1ii—O10—C16—Nd1iv171.0 (4)
Nd1—O1—C7—C6A158.3 (3)Nd1iv—O9—C16—O103.4 (2)
C5B—C6B—C7—O217.0 (11)Nd1iv—O9—C16—C11175.62 (12)
C1B—C6B—C7—O2173.5 (8)C10—C11—C16—O10145.14 (17)
C5B—C6B—C7—O1163.9 (5)C12—C11—C16—O1034.2 (2)
C1B—C6B—C7—O15.6 (16)C10—C11—C16—O933.9 (2)
C5B—C6B—C7—C6C143 (9)C12—C11—C16—O9146.75 (17)
C1B—C6B—C7—C6C47 (8)C10—C11—C16—Nd1iv17.6 (7)
C5B—C6B—C7—C6A45 (7)C12—C11—C16—Nd1iv163.1 (5)
C1B—C6B—C7—C6A124 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y1, z; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5A···O3Wv0.841.762.596 (5)178
O1W—H1W1···O2vi0.741.992.731 (3)175
O1W—H2W1···O4WA0.942.002.849 (4)149
O2W—H1W2···O4WA0.841.862.667 (3)159
O2W—H2W2···O1i0.822.062.874 (3)172
O3W—H1W3···O11vii0.912.563.246 (3)132
O3W—H1W3···O12vii0.912.052.902 (3)156
O3W—H2W3···O9iii0.961.762.688 (2)162
O4WA—H2W4···O3W0.852.513.118 (6)130
C12—H12A···O1ii0.952.413.351 (2)169
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y1, z; (v) x1, y, z+1; (vi) x+1, y+1, z+1; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Nd(C8H3NO6)(C8H4NO6)(H2O)2]·2.5H2O
Mr644.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5748 (1), 10.4634 (1), 13.3285 (2)
α, β, γ (°)69.279 (1), 71.753 (1), 66.046 (1)
V3)1118.71 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.35 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.484, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
22527, 5879, 5725
Rint0.019
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.057, 1.21
No. of reflections5879
No. of parameters398
No. of restraints115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 0.77

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Nd1—O72.3302 (13)Nd1—O2W2.4775 (15)
Nd1—O8i2.4214 (14)Nd1—O22.5223 (13)
Nd1—O10ii2.4481 (14)Nd1—O12.5743 (14)
Nd1—O1W2.4612 (14)Nd1—O10iii2.9332 (14)
Nd1—O9iii2.4708 (13)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5A···O3Wiv0.841.762.596 (5)178
O1W—H1W1···O2v0.741.992.731 (3)175
O1W—H2W1···O4WA0.942.002.849 (4)149
O2W—H1W2···O4WA0.841.862.667 (3)159
O2W—H2W2···O1i0.822.062.874 (3)172
O3W—H1W3···O11vi0.912.563.246 (3)132
O3W—H1W3···O12vi0.912.052.902 (3)156
O3W—H2W3···O9iii0.961.762.688 (2)162
O4WA—H2W4···O3W0.852.513.118 (6)130
C12—H12A···O1ii0.952.413.351 (2)169
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1; (iii) x+1, y1, z; (iv) x1, y, z+1; (v) x+1, y+1, z+1; (vi) x, y1, z.
 

Footnotes

Additional corresponding author, e_mail: r_adnan@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia (USM) for a Research University grant (No. 1001/PKIMIA/811120). HKF thanks USM for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). MMR thanks the Malaysian Government and USM for the award of the post of Research Officer under the Science Fund (grant No. 305/PFIZIK/613312).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. C. & Choppin, G. R. (1989). Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice. Amsterdam: Elsevier.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCui, Y., Ngo, H. L., White, P. S. & Lin, W. (2002). Chem. Commun. pp. 1666–1667.  Web of Science CSD CrossRef Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, Y., Yan, B. & Shao, M. (2008). Solid State Sci. 10, 90–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. J., Cao, R., Bi, W. H., Wang, Y., Wang, Y. L., Li, X. & Guo, Z. G. (2005). Cryst. Growth Des. 5, 1651–1656.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, H., Song, T., Xu, J., He, X., Wang, L. & Zhang, P. (2006). Transition Met. Chem. 31, 992–998.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, B., Bai, Y. Y. & Cgen, Z. X. (2005). J. Mol. Struct. 741, 141–147.  Web of Science CrossRef CAS Google Scholar
First citationYe, J. W., Zhang, J. Y., Ning, G. L., Tian, G., Chen, Y. & Wang, Y. (2008). Cryst. Growth Des. 8, 3098–3106.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1108-m1109
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds