organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Formyl­phen­yl)benzene­sulfonamide

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 28 July 2009; accepted 17 August 2009; online 22 August 2009)

In the title compound, C13H11NO3S, the two aromatic rings are oriented at an angle of 88.18 (8)°. Intra­molecular N—H⋯O and C—H⋯O hydrogen bonds are observed, each of which generates an S(6) ring motif. In the crystal, mol­ecules are linked into C(7) chains along [010] by inter­molecular C—H⋯O hydrogen bonds. The structure is further stabilized by inter­molecular C—H⋯π inter­actions involving the sulfonyl-bound phenyl ring.

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.]); Chohan et al. (2007[Chohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369-379.]); Brown (1971[Brown, G. M. (1971). Adv. Biochem. 35, 35-40.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Sethu Sankar et al. (2002[Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277-o279.]). For related structures, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]); Cotton & Stokley (1970[Cotton, F. A. & Stokley, P. F. (1970). J. Chem. Soc. 92, 294-302.]); Usha et al. (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o1916-o1918.]); Zhu et al. (2008[Zhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11NO3S

  • Mr = 261.29

  • Triclinic, [P \overline 1]

  • a = 7.7656 (2) Å

  • b = 9.0080 (2) Å

  • c = 9.5855 (2) Å

  • α = 86.293 (1)°

  • β = 77.912 (1)°

  • γ = 68.826 (1)°

  • V = 611.35 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.768, Tmax = 0.956

  • 15490 measured reflections

  • 3960 independent reflections

  • 3228 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.02

  • 3960 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.80 (2) 1.99 (2) 2.6751 (19) 144 (2)
C2—H2⋯O1 0.93 2.46 3.0879 (18) 125
C3—H3⋯O2i 0.93 2.56 3.2691 (19) 133
C5—H5⋯Cg1ii 0.93 2.80 3.700 (2) 162
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1. Cg1 is the centroid of the C8–C13 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides have been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activities. Sulfonamides particularly sulfadiazine and sulfadoxine have been used clinically as antimalarial agents (Zareef et al., 2007). Due to their significant pharmacological applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based drug chemistry (Chohan et al., 2007). Sulfonamide derivates are well known drugs and are used to control diseases caused by bacterial infections. The antibacterial action of this group of drugs is exerted by the complete inhibition of dihydropteroate synthase enzyme towards the p-amino benzonate (Brown, 1971). Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003). The sulfonamides inhibit the growth of bacterial organism and are also useful for treating urinary and gastrointestinal infections (Sethu Sankar et al., 2002). In view of this medicinal importance, the crystal structure determination of the title compound (Fig.1) was carried out and the results are presented here.

Atom S1 has a distorted tetrahedral configuration. The widening of angle O1—S1—O2 [119.76 (7)°] and narrowing of angle C8—S1—N1 [106.08 (6)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The two aromatic rings are oriented at an angle of 88.18 (8)°. The angles around atom S1 deviate significantly from the regular tetrahedral value, with the largest deviation of 119.7 (7)° for O1—S1—O2 angle. This may be due to non-bonding interactions between S—O bonds (Cotton & Stokley, 1970). The aldyhyde group is coplanar with the benzene ring, as evidenced by the torsion angle C1—C6—C7—O3 of -2.2 (3)°. The geometrical parameters agree well with those reported for related sulfonamide structures (Usha et al., 2005; Zhu et al., 2008). Intramolecular N1—H1···O3 and C2—H2···O1 hydrogen bonds are observed, each of which generates an S(6) ring motif (Bernstein et al., 1995).

Intermolecular C—H···O hydrogen bonds involving atoms C3 and O2 link molecules into C(7) chains running along the [010] (Fig. 2). The crystal packing is further stabilized by C—H···π interactions involving the sulfonyl-bound phenyl ring.

Related literature top

For the biological activity of sulfonamides, see: Zareef et al. 2007; Chohan et al. 2007; Brown (1971); Pomarnacka & Kozlarska-Kedra (2003); Sethu Sankar et al. (2002). For related structures, see: Bassindale (1984); Cotton & Stokley (1970); Usha et al. 2005; Zhu et al. 2008. For hydrogen-bond motifs, see: Bernstein et al. (1995). Cg1 is the centroid of the C8–C13 ring.

Experimental top

N-[2-(Hydroxymethyl)phenyl]benzenesulfonamide (2 g, 7.6 mmol) was added to a solution of pyridinium chlorochromate (3.25 g, 15.11 mmol) in dry dichloromethane (20 ml) at room temperature and the reaction mixture was stirred for 4 h. The solvent was removed to obtain a crude aldehyde as a white solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Refinement top

Atom H1 was located in a difference map and refined freely. All other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of a C(7) chain in the title compound.
N-(2-Formylphenyl)benzenesulfonamide top
Crystal data top
C13H11NO3SZ = 2
Mr = 261.29F(000) = 272
Triclinic, P1Dx = 1.419 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7656 (2) ÅCell parameters from 3960 reflections
b = 9.0080 (2) Åθ = 2.2–31.3°
c = 9.5855 (2) ŵ = 0.26 mm1
α = 86.293 (1)°T = 293 K
β = 77.912 (1)°Block, colourless
γ = 68.826 (1)°0.21 × 0.19 × 0.17 mm
V = 611.35 (2) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3960 independent reflections
Radiation source: fine-focus sealed tube3228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 31.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.768, Tmax = 0.956k = 1313
15490 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1353P]
where P = (Fo2 + 2Fc2)/3
3960 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H11NO3Sγ = 68.826 (1)°
Mr = 261.29V = 611.35 (2) Å3
Triclinic, P1Z = 2
a = 7.7656 (2) ÅMo Kα radiation
b = 9.0080 (2) ŵ = 0.26 mm1
c = 9.5855 (2) ÅT = 293 K
α = 86.293 (1)°0.21 × 0.19 × 0.17 mm
β = 77.912 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3960 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3228 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.956Rint = 0.022
15490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
3960 reflectionsΔρmin = 0.31 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19429 (17)0.98956 (14)0.61966 (13)0.0409 (2)
C20.1595 (2)1.10035 (15)0.72614 (15)0.0470 (3)
H20.12071.07790.82100.056*
C30.1827 (2)1.24378 (17)0.69056 (18)0.0563 (3)
H30.15951.31700.76260.068*
C40.2392 (3)1.2813 (2)0.5513 (2)0.0695 (5)
H40.25471.37830.52920.083*
C50.2722 (3)1.1734 (2)0.44619 (19)0.0675 (4)
H50.30851.19870.35170.081*
C60.2529 (2)1.02670 (18)0.47720 (15)0.0503 (3)
C70.2926 (3)0.9189 (3)0.35857 (18)0.0692 (5)
H70.32640.95540.26770.083*
C80.36455 (18)0.70690 (14)0.85278 (13)0.0413 (3)
C90.5123 (2)0.57064 (16)0.79634 (16)0.0519 (3)
H90.49630.50550.73250.062*
C100.6827 (2)0.5337 (2)0.83658 (19)0.0628 (4)
H100.78290.44250.79990.075*
C110.7062 (2)0.6304 (2)0.93052 (19)0.0621 (4)
H110.82250.60470.95630.074*
C120.5587 (2)0.7649 (2)0.98675 (18)0.0599 (4)
H120.57580.82961.05030.072*
C130.3853 (2)0.80416 (16)0.94909 (15)0.0487 (3)
H130.28470.89410.98770.058*
N10.16942 (19)0.84378 (14)0.64708 (14)0.0509 (3)
O10.00479 (14)0.85915 (13)0.90061 (12)0.0576 (3)
O20.13222 (17)0.60899 (13)0.76162 (14)0.0649 (3)
O30.2861 (2)0.78653 (18)0.36620 (14)0.0795 (4)
S10.14948 (5)0.75289 (4)0.79852 (4)0.04575 (11)
H10.199 (3)0.790 (2)0.5767 (19)0.064 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (6)0.0369 (5)0.0461 (6)0.0096 (4)0.0123 (5)0.0046 (5)
C20.0562 (7)0.0365 (6)0.0482 (7)0.0149 (5)0.0113 (6)0.0055 (5)
C30.0638 (9)0.0377 (6)0.0699 (9)0.0173 (6)0.0180 (7)0.0056 (6)
C40.0839 (12)0.0498 (8)0.0803 (11)0.0310 (8)0.0182 (10)0.0112 (8)
C50.0769 (11)0.0679 (10)0.0581 (9)0.0294 (9)0.0116 (8)0.0132 (8)
C60.0475 (7)0.0533 (8)0.0471 (7)0.0125 (6)0.0117 (6)0.0036 (6)
C70.0711 (10)0.0802 (12)0.0485 (8)0.0171 (9)0.0081 (7)0.0160 (8)
C80.0431 (6)0.0316 (5)0.0466 (6)0.0155 (4)0.0004 (5)0.0003 (4)
C90.0505 (7)0.0380 (6)0.0589 (8)0.0127 (5)0.0027 (6)0.0044 (5)
C100.0474 (7)0.0506 (8)0.0725 (10)0.0056 (6)0.0036 (7)0.0057 (7)
C110.0481 (7)0.0680 (10)0.0680 (9)0.0209 (7)0.0118 (7)0.0184 (8)
C120.0638 (9)0.0618 (9)0.0604 (9)0.0276 (7)0.0175 (7)0.0038 (7)
C130.0518 (7)0.0414 (6)0.0511 (7)0.0160 (5)0.0062 (6)0.0039 (5)
N10.0662 (7)0.0391 (5)0.0508 (6)0.0199 (5)0.0134 (5)0.0108 (5)
O10.0440 (5)0.0534 (6)0.0689 (7)0.0164 (4)0.0051 (5)0.0129 (5)
O20.0657 (7)0.0436 (5)0.0938 (8)0.0315 (5)0.0089 (6)0.0106 (5)
O30.0860 (9)0.0802 (9)0.0672 (8)0.0192 (7)0.0129 (7)0.0333 (7)
S10.04451 (18)0.03489 (16)0.0591 (2)0.01869 (12)0.00239 (14)0.00769 (12)
Geometric parameters (Å, º) top
C1—C21.3900 (17)C8—C91.3871 (18)
C1—N11.3957 (17)C8—S11.7515 (14)
C1—C61.4052 (19)C9—C101.375 (2)
C2—C31.3797 (19)C9—H90.93
C2—H20.93C10—C111.374 (3)
C3—C41.375 (2)C10—H100.93
C3—H30.93C11—C121.376 (2)
C4—C51.365 (3)C11—H110.93
C4—H40.93C12—C131.383 (2)
C5—C61.390 (2)C12—H120.93
C5—H50.93C13—H130.93
C6—C71.453 (2)N1—S11.6265 (13)
C7—O31.208 (2)N1—H10.798 (18)
C7—H70.93O1—S11.4212 (10)
C8—C131.3838 (18)O2—S11.4241 (10)
C2—C1—N1123.02 (12)C10—C9—C8118.75 (15)
C2—C1—C6118.86 (12)C10—C9—H9120.6
N1—C1—C6118.10 (12)C8—C9—H9120.6
C3—C2—C1119.78 (14)C11—C10—C9120.54 (15)
C3—C2—H2120.1C11—C10—H10119.7
C1—C2—H2120.1C9—C10—H10119.7
C4—C3—C2121.69 (15)C10—C11—C12120.40 (15)
C4—C3—H3119.2C10—C11—H11119.8
C2—C3—H3119.2C12—C11—H11119.8
C5—C4—C3118.78 (15)C11—C12—C13120.29 (16)
C5—C4—H4120.6C11—C12—H12119.9
C3—C4—H4120.6C13—C12—H12119.9
C4—C5—C6121.51 (16)C12—C13—C8118.66 (14)
C4—C5—H5119.2C12—C13—H13120.7
C6—C5—H5119.2C8—C13—H13120.7
C5—C6—C1119.37 (14)C1—N1—S1128.49 (9)
C5—C6—C7117.69 (16)C1—N1—H1112.3 (14)
C1—C6—C7122.94 (15)S1—N1—H1116.5 (13)
O3—C7—C6126.49 (17)O1—S1—O2119.76 (7)
O3—C7—H7116.8O1—S1—N1109.04 (7)
C6—C7—H7116.8O2—S1—N1103.70 (7)
C13—C8—C9121.35 (13)O1—S1—C8108.57 (7)
C13—C8—S1120.66 (10)O2—S1—C8108.83 (7)
C9—C8—S1117.98 (11)N1—S1—C8106.08 (6)
N1—C1—C2—C3178.37 (13)C9—C10—C11—C120.6 (2)
C6—C1—C2—C30.1 (2)C10—C11—C12—C130.1 (2)
C1—C2—C3—C40.2 (2)C11—C12—C13—C80.9 (2)
C2—C3—C4—C50.3 (3)C9—C8—C13—C121.3 (2)
C3—C4—C5—C61.1 (3)S1—C8—C13—C12178.76 (11)
C4—C5—C6—C11.4 (3)C2—C1—N1—S116.6 (2)
C4—C5—C6—C7179.47 (18)C6—C1—N1—S1164.92 (11)
C2—C1—C6—C50.8 (2)C1—N1—S1—O152.78 (14)
N1—C1—C6—C5177.67 (14)C1—N1—S1—O2178.56 (12)
C2—C1—C6—C7179.97 (14)C1—N1—S1—C863.97 (14)
N1—C1—C6—C71.4 (2)C13—C8—S1—O119.79 (13)
C5—C6—C7—O3178.68 (18)C9—C8—S1—O1160.20 (10)
C1—C6—C7—O32.2 (3)C13—C8—S1—O2151.70 (11)
C13—C8—C9—C100.7 (2)C9—C8—S1—O228.29 (13)
S1—C8—C9—C10179.30 (11)C13—C8—S1—N197.27 (11)
C8—C9—C10—C110.2 (2)C9—C8—S1—N182.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.80 (2)1.99 (2)2.6751 (19)144 (2)
C2—H2···O10.932.463.0879 (18)125
C3—H3···O2i0.932.563.2691 (19)133
C5—H5···Cg1ii0.932.803.700 (2)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC13H11NO3S
Mr261.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7656 (2), 9.0080 (2), 9.5855 (2)
α, β, γ (°)86.293 (1), 77.912 (1), 68.826 (1)
V3)611.35 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.768, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
15490, 3960, 3228
Rint0.022
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.02
No. of reflections3960
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.80 (2)1.99 (2)2.6751 (19)144 (2)
C2—H2···O10.932.463.0879 (18)125
C3—H3···O2i0.932.563.2691 (19)133
C5—H5···Cg1ii0.932.803.700 (2)162
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

ST and AS thank Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, G. M. (1971). Adv. Biochem. 35, 35–40.  CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369–379.  Web of Science CrossRef Google Scholar
First citationCotton, F. A. & Stokley, P. F. (1970). J. Chem. Soc. 92, 294–302.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277–o279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jaisankar, P. & Srinivasan, P. C. (2005). Acta Cryst. E61, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef CAS Google Scholar
First citationZhu, H.-Y., Wu, Z. & Jiang, S. (2008). Acta Cryst. E64, o596.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds