organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Bromo-N′-(4-meth­oxy­benzyl­­idene)benzohydrazide methanol solvate

aDepartment of Chemistry, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 29 July 2009; accepted 29 July 2009; online 8 August 2009)

The title compound, C15H13BrN2O2·CH3OH, was synthesized by the reaction of 4-methoxy­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The benzohydrazide mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 4.0 (2)°. The benzohydrazide and methanol mol­ecules are linked into a chain propagating along the b axis by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]); Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.]); You et al. (2008[You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215-2219.]). For hydrazone compounds reported previously by our group, see: Qu et al. (2008[Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Cao & Lu (2009a[Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.],b[Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.]); Qu & Cao (2009[Qu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.]); Cao & Wang (2009[Cao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.]); Cao (2009[Cao, G.-B. (2009). Acta Cryst. E65, o2085.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O2·CH4O

  • Mr = 365.23

  • Monoclinic, P 21 /c

  • a = 13.585 (1) Å

  • b = 6.715 (1) Å

  • c = 18.377 (1) Å

  • β = 104.429 (2)°

  • V = 1623.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.630, Tmax = 0.672

  • 9539 measured reflections

  • 3539 independent reflections

  • 2132 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.02

  • 3539 reflections

  • 205 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.82 2.07 2.831 (3) 154
O3—H3⋯N2 0.82 2.60 3.211 (3) 132
N1—H1⋯O3i 0.90 (1) 2.12 (1) 2.993 (3) 166 (3)
C6—H6⋯O3i 0.93 2.49 3.406 (4) 168
C8—H8⋯O3i 0.93 2.56 3.370 (3) 146
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Study on the crystal structures of hydrazone derivatives is an interesting topic in structural chemistry. Recently, crystal structures of a number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b; Qu & Cao, 2009; Cao & Wang, 2009), the title new hydrazone compound derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide is reported.

The title compound (Fig. 1) consists of a hydrazone molecule and a methanol molecule of crystallization. The methanol molecule is linked to the hydrazone molecule through O—H···O and O—H···N hydrogen bonds (Table 1). The hydrazone molecule displays an E configuration about the CN bond. The dihedral angle between the two benzene rings is 4.0 (2)°. In the crystal structure, molecules are linked through intermolecular N—H···O, O—H···O, O—H···N and C—H···O hydrogen bonds (Table 1) to form chains running along the b axis (Fig. 2).

Related literature top

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For hydrazone compounds reported previously by our group, see: Qu et al. (2008); Yang et al. (2008); Cao & Lu (2009a,b); Qu & Cao (2009); Cao & Wang (2009); Cao (2009).

Experimental top

The title compound was prepared by refluxing equimolar quantities of 4-methoxybenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement top

Atom H1 was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with a O-H distance of 0.82 Å, C-H distances of 0.93-0.96 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.
(E)-3-Bromo-N'-(4-methoxybenzylidene)benzohydrazide methanol solvate top
Crystal data top
C15H13BrN2O2·CH4OF(000) = 744
Mr = 365.23Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2168 reflections
a = 13.585 (1) Åθ = 2.7–24.6°
b = 6.715 (1) ŵ = 2.55 mm1
c = 18.377 (1) ÅT = 298 K
β = 104.429 (2)°Block, colourless
V = 1623.5 (3) Å30.20 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3539 independent reflections
Radiation source: fine-focus sealed tube2132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1717
Tmin = 0.630, Tmax = 0.672k = 88
9539 measured reflectionsl = 2320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.043P)2 + 0.516P]
where P = (Fo2 + 2Fc2)/3
3539 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
C15H13BrN2O2·CH4OV = 1623.5 (3) Å3
Mr = 365.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.585 (1) ŵ = 2.55 mm1
b = 6.715 (1) ÅT = 298 K
c = 18.377 (1) Å0.20 × 0.20 × 0.17 mm
β = 104.429 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3539 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2132 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.672Rint = 0.030
9539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
3539 reflectionsΔρmin = 0.52 e Å3
205 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53424 (3)0.09750 (6)0.18341 (2)0.09185 (19)
O10.26855 (15)0.2642 (3)0.02385 (11)0.0608 (5)
O20.19847 (15)0.3318 (3)0.21672 (11)0.0595 (5)
O30.20352 (18)0.5573 (3)0.06465 (12)0.0676 (6)
H30.20410.45850.03850.101*
N10.21308 (16)0.0152 (3)0.02088 (12)0.0460 (5)
N20.14486 (16)0.0932 (3)0.04946 (12)0.0477 (5)
C10.34289 (18)0.0397 (4)0.04807 (14)0.0410 (6)
C20.3955 (2)0.0578 (4)0.09241 (14)0.0470 (6)
H20.38580.19370.10110.056*
C30.4622 (2)0.0442 (4)0.12395 (15)0.0504 (7)
C40.4778 (2)0.2432 (4)0.11248 (16)0.0573 (8)
H40.52300.31110.13410.069*
C50.4257 (2)0.3414 (4)0.06842 (17)0.0560 (7)
H50.43600.47730.06020.067*
C60.3584 (2)0.2429 (4)0.03613 (15)0.0488 (7)
H60.32360.31200.00650.059*
C70.27195 (19)0.0826 (4)0.01586 (14)0.0446 (6)
C80.0896 (2)0.0058 (4)0.08234 (15)0.0485 (6)
H80.09780.14320.08620.058*
C90.01344 (18)0.0883 (4)0.11444 (14)0.0430 (6)
C100.0341 (2)0.0209 (4)0.15986 (15)0.0488 (7)
H100.01790.15490.16830.059*
C110.1040 (2)0.0628 (4)0.19264 (15)0.0519 (7)
H110.13420.01370.22320.062*
C120.12967 (19)0.2614 (4)0.18031 (14)0.0451 (6)
C130.0856 (2)0.3731 (4)0.13385 (15)0.0474 (6)
H130.10380.50580.12420.057*
C140.0142 (2)0.2866 (4)0.10182 (15)0.0474 (6)
H140.01590.36300.07110.057*
C150.2213 (2)0.5384 (4)0.21096 (18)0.0662 (9)
H15A0.16110.61340.23300.099*
H15B0.27280.56740.23700.099*
H15C0.24550.57420.15900.099*
C160.2481 (3)0.5111 (5)0.13973 (19)0.0749 (9)
H16A0.31600.46360.14450.112*
H16B0.20880.40980.15630.112*
H16C0.25000.62830.17000.112*
H10.210 (2)0.1474 (16)0.0258 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1033 (3)0.0942 (3)0.0980 (3)0.0125 (2)0.0627 (2)0.0055 (2)
O10.0810 (14)0.0302 (11)0.0831 (14)0.0074 (9)0.0428 (11)0.0037 (9)
O20.0673 (12)0.0512 (11)0.0699 (13)0.0065 (9)0.0358 (10)0.0029 (10)
O30.1030 (16)0.0346 (11)0.0763 (15)0.0028 (11)0.0434 (13)0.0005 (10)
N10.0513 (13)0.0327 (11)0.0584 (14)0.0025 (10)0.0218 (11)0.0012 (11)
N20.0514 (13)0.0417 (12)0.0538 (14)0.0046 (10)0.0202 (11)0.0054 (11)
C10.0431 (14)0.0351 (14)0.0431 (15)0.0001 (11)0.0075 (12)0.0043 (11)
C20.0519 (16)0.0369 (14)0.0515 (16)0.0012 (12)0.0112 (13)0.0010 (12)
C30.0512 (16)0.0540 (18)0.0481 (16)0.0026 (13)0.0163 (13)0.0029 (13)
C40.0560 (18)0.0532 (18)0.0635 (19)0.0122 (14)0.0167 (15)0.0099 (15)
C50.0638 (19)0.0358 (15)0.0686 (19)0.0104 (13)0.0172 (16)0.0023 (14)
C60.0544 (17)0.0328 (14)0.0599 (17)0.0010 (12)0.0153 (14)0.0017 (12)
C70.0483 (15)0.0376 (16)0.0471 (15)0.0051 (12)0.0105 (12)0.0003 (12)
C80.0520 (17)0.0381 (14)0.0564 (17)0.0032 (13)0.0153 (14)0.0028 (13)
C90.0411 (14)0.0406 (15)0.0453 (15)0.0004 (12)0.0071 (12)0.0041 (12)
C100.0567 (17)0.0361 (14)0.0548 (16)0.0020 (12)0.0161 (14)0.0028 (13)
C110.0606 (18)0.0443 (16)0.0555 (17)0.0027 (13)0.0231 (14)0.0082 (13)
C120.0454 (15)0.0463 (16)0.0459 (15)0.0012 (12)0.0158 (12)0.0027 (12)
C130.0538 (16)0.0339 (14)0.0559 (17)0.0038 (12)0.0165 (13)0.0013 (12)
C140.0537 (16)0.0397 (15)0.0520 (16)0.0033 (12)0.0189 (13)0.0029 (13)
C150.073 (2)0.059 (2)0.073 (2)0.0194 (16)0.0303 (17)0.0001 (16)
C160.086 (2)0.064 (2)0.078 (3)0.0032 (18)0.028 (2)0.0082 (19)
Geometric parameters (Å, º) top
Br1—C31.895 (3)C6—H60.93
O1—C71.227 (3)C8—C91.456 (3)
O2—C121.363 (3)C8—H80.93
O2—C151.420 (3)C9—C101.385 (4)
O3—C161.396 (4)C9—C141.387 (3)
O3—H30.82C10—C111.366 (4)
N1—C71.340 (3)C10—H100.93
N1—N21.381 (3)C11—C121.382 (4)
N1—H10.895 (10)C11—H110.93
N2—C81.264 (3)C12—C131.380 (3)
C1—C21.376 (3)C13—C141.381 (3)
C1—C61.390 (4)C13—H130.93
C1—C71.496 (3)C14—H140.93
C2—C31.374 (3)C15—H15A0.96
C2—H20.93C15—H15B0.96
C3—C41.361 (4)C15—H15C0.96
C4—C51.370 (4)C16—H16A0.96
C4—H40.93C16—H16B0.96
C5—C61.376 (4)C16—H16C0.96
C5—H50.93
C12—O2—C15117.8 (2)C10—C9—C14117.5 (2)
C16—O3—H3109.5C10—C9—C8119.9 (2)
C7—N1—N2118.3 (2)C14—C9—C8122.6 (2)
C7—N1—H1126 (2)C11—C10—C9121.8 (2)
N2—N1—H1115 (2)C11—C10—H10119.1
C8—N2—N1116.1 (2)C9—C10—H10119.1
C2—C1—C6118.7 (2)C10—C11—C12120.0 (2)
C2—C1—C7117.0 (2)C10—C11—H11120.0
C6—C1—C7124.4 (2)C12—C11—H11120.0
C3—C2—C1120.4 (2)O2—C12—C13124.9 (2)
C3—C2—H2119.8O2—C12—C11115.5 (2)
C1—C2—H2119.8C13—C12—C11119.6 (2)
C4—C3—C2121.2 (2)C12—C13—C14119.6 (2)
C4—C3—Br1119.9 (2)C12—C13—H13120.2
C2—C3—Br1118.9 (2)C14—C13—H13120.2
C3—C4—C5118.7 (2)C13—C14—C9121.5 (2)
C3—C4—H4120.7C13—C14—H14119.3
C5—C4—H4120.7C9—C14—H14119.3
C4—C5—C6121.3 (3)O2—C15—H15A109.5
C4—C5—H5119.3O2—C15—H15B109.5
C6—C5—H5119.3H15A—C15—H15B109.5
C5—C6—C1119.6 (3)O2—C15—H15C109.5
C5—C6—H6120.2H15A—C15—H15C109.5
C1—C6—H6120.2H15B—C15—H15C109.5
O1—C7—N1122.5 (2)O3—C16—H16A109.5
O1—C7—C1120.5 (2)O3—C16—H16B109.5
N1—C7—C1117.0 (2)H16A—C16—H16B109.5
N2—C8—C9122.1 (2)O3—C16—H16C109.5
N2—C8—H8118.9H16A—C16—H16C109.5
C9—C8—H8118.9H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.822.072.831 (3)154
O3—H3···N20.822.603.211 (3)132
N1—H1···O3i0.90 (1)2.12 (1)2.993 (3)166 (3)
C6—H6···O3i0.932.493.406 (4)168
C8—H8···O3i0.932.563.370 (3)146
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O2·CH4O
Mr365.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.585 (1), 6.715 (1), 18.377 (1)
β (°) 104.429 (2)
V3)1623.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.630, 0.672
No. of measured, independent and
observed [I > 2σ(I)] reflections
9539, 3539, 2132
Rint0.030
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.02
No. of reflections3539
No. of parameters205
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.822.072.831 (3)154
O3—H3···N20.822.603.211 (3)132
N1—H1···O3i0.90 (1)2.12 (1)2.993 (3)166 (3)
C6—H6···O3i0.932.493.406 (4)168
C8—H8···O3i0.932.563.370 (3)146
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The Vital Foundation of Ankang University (project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02 J K202) are gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2009). Acta Cryst. E65, o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Wang, X.-Y. (2009). Acta Cryst. E65, o1725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215–2219.  CAS Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds