organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2205-o2206

N-Cyano-7α-meth­oxy­carbonyl-6,14-endo-etheno­tetra­hydro­northebaine

aChemistry Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Kınıklı, Denizli, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Gazi University, Ankara, Turkey, and cDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 29 July 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound (systematic name: methyl 17-cyano-3,6-dimeth­oxy-4,5α-ep­oxy-6,14-endo-ethenomorphinan-7-carboxyl­ate), C23H24N2O5, the dihydro­furan ring adopts a twist conformation, while the piperidine ring is in a chair conformation. The benzene-fused cyclo­hexene ring adopts an envelope conformation. An intra­molecular C—H⋯O hydrogen bond is observed. Inter­molecular C—H⋯N and C—H⋯O hydrogen bonds form C(5) chains along the a and b axes, respectively, and together they form a three-dimensional network.

Related literature

For general background, see: Parrish et al.(2004[Parrish, D., Chen, W., Coop, A. & Deschamps, J. R. (2004). Acta Cryst. E60, o793-o794.]); Bentley & Hardy (1967[Bentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc. 89, 3267-3273.]); Marton et al. (1995[Marton, J., Miklos, S., Hosztafi, S. & Makleit, S. (1995). Synth. Commun. 25, 829-848.]); Derrick et al. (2000[Derrick, I., Coop, A., Al-Mousawi, S. M., Husbands, S. M. & Lewis, J. W. (2000). Tetrahedron Lett. 41, 7571-7576.]); Lenz et al. (1986[Lenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). Opiates, p. 65. London: Academic Press.]); Hoskin & Hanks (1991[Hoskin, P. J. & Hanks, G. W. (1991). Drugs, 41, 326-338.]); Takemori et al. (1972[Takemori, A. E., Hayashi, G. & Smits, S. E. (1972). Eur. J. Pharmacol. 20, 85-91.]); Liu et al. (2005[Liu, H., Zhong, B., Lui, C., Wu, B. & Gong, Z. (2005). Acta Chim. Slov. 52, 80-85.]). For the synthesis, see: Odabaşoğlu et al. (2009[Odabaşoğlu, M., Yavuz, S., Pamir, Ö., Yıldırır, Y. & Büyükgüngör, O. (2009). Acta Cryst. E65, o864.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24N2O5

  • Mr = 408.44

  • Orthorhombic, P 21 21 21

  • a = 7.1880 (3) Å

  • b = 11.1380 (4) Å

  • c = 24.6389 (10) Å

  • V = 1972.59 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.63 × 0.44 × 0.27 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.953, Tmax = 0.975

  • 9908 measured reflections

  • 2328 independent reflections

  • 2035 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.04

  • 2328 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯O5 0.96 2.55 3.120 (3) 118
C3—H3⋯O1i 0.93 2.54 3.399 (3) 153
C9—H9⋯N2ii 0.98 2.49 3.467 (4) 179
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Morphine alkaloids and semisynthetic derivatives are important drugs for the relief of severe pain. A wide variety of modifications of the well known alkaloids thebaine, codeine and morphine have been described. The Diels-Alder adducts of the thebaine are key intermediates in the synthesis of the potent opioid analgesics (Parrish et al., 2004). Diels-Alder reactions between thebaine and dienophiles predominantly give rise to 7α adducts, and the corresponding 7β adducts have received little attention due to their difficulty of preparation (Bentley & Hardy 1967; Marton et al., 1995; Derrick et al., 2000).

The nature of the substituent at the nitrogen atom in morphine alkaloids is a significant factor having both quantitative and qualitative influence on their pharmacological activity (Lenz et al., 1986). The synthesis and pharmacological activities of 6,14-endoethanomorphinan derivatives have been extensively studied. The typical examples of the pharmacological active compounds were reported in the literature such as buprenorphine (Hoskin & Hanks 1991), etorphine (Takemori et al., 1972) and thienorphine (Liu et al., 2005).

The overall view and atom-labelling of the molecule of (I) are displayed in Fig. 1. The five-membered ring [O2/C6/C5/C11/C17] adopts a twist conformation. Rings A (N1/C9/C10/C11/C12/C13), B(C4/C5/C11/C10/C9/C8), C(C10/C11/C17/C16/C18/C19) and D(C10/C14/C15/C16/C18/C19) are not planar, having total puckering amplitudes, QT, of 0.596 (3) Å, 0.582 (2) Å, 0.768 (2)Å and 0.823 (2) Å, respectively. Rings A, B, C and D adopt chair, envelope, distorted boat and distorted boat conformations, respectively [for ring A: ϕ = 96 (2)° and θ = 9.4 (3)°; for ring B: ϕ = 350.1 (3)° and θ = 125.3 (3)°; for ring C: ϕ = 179.0 (2)° and θ = 90.8 (2)°; for ring D: ϕ = 6.2 (2)° and θ = 85.8 (1)°; Cremer & Pople, 1975). An intramolecular C20—H20A···O5 hydrogen bond is observed (Fig. 1).

The crystal packing is stabilized by intermolecular C9—H9···N2 and C3—H3···O1 hydrogen bonds (Table 1). As shown in Fig. 2 and Fig. 3, each of these hydrogen bonds forms a C(5) chain (Bernstein et al., 1995; Etter, 1990) and together they form a three-dimensional network.

Related literature top

For general background, see: Parrish et al.(2004); Bentley & Hardy (1967); Marton et al. (1995); Derrick et al. (2000); Lenz et al. (1986); Hoskin & Hanks (1991); Takemori et al. (1972); Liu et al. (2005). For the synthesis, see: Odabaşoğlu et al. (2009). For graph-set notation, see: Bernstein et al. (1995); Etter (1990). For ring conformations, see: Cremer & Pople (1975).

Experimental top

6,14-endo-Etheno-7α-methoxycarbonyltetrahydrothebaine was prepared according to the literature method (Odabaşoğlu et al., 2009). For the preparation of the title compound, 6,14-endo-etheno-7α-methoxycarbonyltetrahydrothebaine (240 mg, 0,6 mmol) was heated under reflux with cyanogen bromide (85m g, 0,8 mmol) in dry chloroform (20 ml) for 24 h and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using a mixture of methanol-chloroform (1:1) as the eluant. The N-cyanonor compound was recrystallized from methanol in 2 d (m.p.440–441 K).

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. In the absence of significant anomalous scattering, 1694 Friedel pairs were merged in the final refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 15% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a C(5) chain along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry code: (i) -x, 1/2 + y, 3/2 - z].
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a C(5) chain along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity [symmetry codes: (i) x - 1/2, 3/2 - y, 1 - z; (ii) x + 1/2, 3/2 - y, 1 - z].
[Figure 4] Fig. 4. Preparation of the title compound.
methyl 17-cyano-3,6-dimethoxy-4,5α-epoxy-6,14- endo-ethenomorphinan-7-carboxylate top
Crystal data top
C23H24N2O5F(000) = 864
Mr = 408.44Dx = 1.375 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9908 reflections
a = 7.1880 (3) Åθ = 1.8–28.0°
b = 11.1380 (4) ŵ = 0.10 mm1
c = 24.6389 (10) ÅT = 296 K
V = 1972.59 (13) Å3Prism, colourless
Z = 40.63 × 0.44 × 0.27 mm
Data collection top
Stoe IPDS 2
diffractometer
2328 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2035 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.021
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω–scan rotation methodh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1313
Tmin = 0.953, Tmax = 0.975l = 3020
9908 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
2328 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C23H24N2O5V = 1972.59 (13) Å3
Mr = 408.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1880 (3) ŵ = 0.10 mm1
b = 11.1380 (4) ÅT = 296 K
c = 24.6389 (10) Å0.63 × 0.44 × 0.27 mm
Data collection top
Stoe IPDS 2
diffractometer
2328 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2035 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.975Rint = 0.021
9908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
2328 reflectionsΔρmin = 0.20 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1582 (3)0.5657 (2)0.76990 (11)0.0558 (6)
C20.1229 (3)0.6871 (2)0.76212 (13)0.0651 (8)
H20.04300.72640.78590.078*
C30.2027 (3)0.7513 (2)0.72016 (12)0.0584 (7)
H30.16970.83120.71480.070*
C40.3316 (3)0.6975 (2)0.68598 (10)0.0494 (5)
C50.3793 (3)0.5805 (2)0.69774 (9)0.0431 (5)
C60.2847 (3)0.5129 (2)0.73515 (9)0.0438 (5)
C70.0990 (5)0.5179 (3)0.86177 (15)0.0929 (11)
H7A0.22830.50340.86900.139*
H7B0.02450.46500.88360.139*
H7C0.06930.59970.87050.139*
C80.3985 (4)0.7488 (2)0.63180 (11)0.0619 (7)
H8A0.47840.81710.63910.074*
H8B0.29120.77830.61200.074*
C90.5055 (4)0.6599 (2)0.59495 (10)0.0550 (6)
H90.47810.67980.55700.066*
C100.4513 (3)0.5280 (2)0.60475 (9)0.0445 (5)
C110.5026 (3)0.5014 (2)0.66483 (8)0.0405 (4)
C120.7122 (3)0.5215 (2)0.67525 (9)0.0492 (5)
H12A0.73750.51010.71360.059*
H12B0.78270.46180.65530.059*
C130.7765 (4)0.6444 (3)0.65865 (10)0.0615 (7)
H13A0.72840.70400.68370.074*
H13B0.91130.64820.65940.074*
C140.5448 (4)0.4336 (2)0.56775 (9)0.0530 (6)
H14A0.49720.44070.53100.064*
H14B0.67820.44660.56680.064*
C150.5020 (3)0.3077 (2)0.59042 (9)0.0464 (5)
H150.61470.27770.60830.056*
C160.3421 (3)0.31523 (19)0.63470 (9)0.0414 (5)
C170.4396 (3)0.37595 (19)0.68281 (8)0.0413 (5)
H170.54880.32850.69320.050*
C180.1924 (3)0.3955 (2)0.61281 (9)0.0460 (5)
H180.06960.37010.60960.055*
C190.2453 (3)0.5040 (2)0.59850 (9)0.0476 (5)
H190.16250.56150.58560.057*
C200.3673 (4)0.1229 (2)0.67858 (11)0.0580 (6)
H20A0.48820.11290.66270.087*
H20B0.30580.04650.68030.087*
H20C0.38020.15500.71450.087*
C210.4457 (3)0.2176 (2)0.54757 (10)0.0524 (6)
C220.4577 (6)0.0119 (3)0.52491 (12)0.0800 (9)
H22A0.32860.00570.53090.120*
H22B0.53100.05780.53310.120*
H22C0.47600.03400.48760.120*
C230.8136 (4)0.7260 (2)0.56914 (10)0.0583 (6)
N10.7083 (4)0.6693 (2)0.60326 (9)0.0710 (7)
N20.9105 (5)0.7735 (3)0.53969 (12)0.1007 (10)
O10.0625 (3)0.4968 (2)0.80685 (10)0.0924 (8)
O20.3187 (2)0.39121 (14)0.73017 (6)0.0487 (4)
O30.2608 (2)0.20286 (14)0.64642 (7)0.0496 (4)
O40.3500 (3)0.2385 (2)0.50871 (8)0.0753 (6)
O50.5139 (3)0.10971 (16)0.55952 (7)0.0611 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (11)0.0639 (15)0.0594 (15)0.0158 (11)0.0118 (11)0.0196 (12)
C20.0411 (12)0.0655 (17)0.089 (2)0.0039 (12)0.0063 (13)0.0372 (15)
C30.0479 (13)0.0478 (13)0.0794 (18)0.0029 (11)0.0166 (13)0.0162 (12)
C40.0462 (12)0.0453 (12)0.0565 (14)0.0042 (10)0.0137 (11)0.0037 (10)
C50.0380 (10)0.0512 (12)0.0400 (11)0.0009 (9)0.0052 (9)0.0007 (9)
C60.0376 (10)0.0510 (12)0.0429 (11)0.0012 (9)0.0001 (9)0.0062 (9)
C70.076 (2)0.110 (3)0.093 (3)0.015 (2)0.0151 (18)0.037 (2)
C80.0750 (17)0.0485 (13)0.0622 (16)0.0068 (13)0.0176 (14)0.0088 (12)
C90.0606 (15)0.0632 (15)0.0413 (12)0.0127 (12)0.0101 (11)0.0129 (10)
C100.0458 (11)0.0529 (12)0.0347 (10)0.0025 (10)0.0048 (9)0.0069 (9)
C110.0374 (10)0.0496 (11)0.0346 (10)0.0006 (9)0.0008 (8)0.0036 (9)
C120.0375 (11)0.0722 (15)0.0379 (11)0.0018 (10)0.0014 (9)0.0052 (11)
C130.0485 (13)0.0891 (19)0.0469 (14)0.0188 (13)0.0052 (11)0.0121 (12)
C140.0539 (13)0.0704 (15)0.0348 (11)0.0025 (12)0.0042 (10)0.0017 (10)
C150.0399 (11)0.0609 (13)0.0384 (11)0.0064 (10)0.0002 (9)0.0008 (10)
C160.0379 (10)0.0469 (11)0.0395 (11)0.0033 (9)0.0016 (9)0.0026 (9)
C170.0388 (10)0.0502 (11)0.0348 (11)0.0079 (9)0.0018 (9)0.0037 (9)
C180.0358 (10)0.0554 (13)0.0467 (12)0.0034 (10)0.0052 (9)0.0014 (10)
C190.0465 (11)0.0509 (12)0.0454 (11)0.0058 (10)0.0129 (10)0.0016 (10)
C200.0634 (15)0.0523 (13)0.0582 (15)0.0050 (12)0.0007 (12)0.0119 (12)
C210.0518 (13)0.0645 (15)0.0408 (12)0.0066 (12)0.0021 (10)0.0039 (11)
C220.117 (3)0.0672 (17)0.0557 (16)0.0099 (19)0.0001 (17)0.0166 (14)
C230.0749 (16)0.0556 (14)0.0443 (13)0.0099 (13)0.0118 (12)0.0001 (11)
N10.0676 (14)0.0989 (17)0.0467 (12)0.0295 (13)0.0056 (10)0.0215 (12)
N20.101 (2)0.135 (3)0.0660 (18)0.026 (2)0.0247 (16)0.0189 (17)
O10.0946 (15)0.0935 (15)0.0891 (16)0.0483 (13)0.0573 (13)0.0418 (13)
O20.0554 (8)0.0505 (9)0.0403 (8)0.0008 (7)0.0127 (7)0.0014 (7)
O30.0454 (8)0.0485 (8)0.0548 (9)0.0022 (7)0.0009 (7)0.0038 (7)
O40.0877 (14)0.0788 (12)0.0596 (12)0.0128 (12)0.0285 (11)0.0099 (9)
O50.0748 (11)0.0627 (10)0.0459 (9)0.0161 (10)0.0023 (9)0.0078 (8)
Geometric parameters (Å, º) top
C1—O11.376 (3)C13—N11.476 (3)
C1—C61.381 (3)C13—H13A0.97
C1—C21.389 (4)C13—H13B0.97
C2—C31.382 (4)C14—C151.541 (3)
C2—H20.93C14—H14A0.97
C3—C41.388 (4)C14—H14B0.97
C3—H30.93C15—C211.512 (3)
C4—C51.379 (3)C15—C161.587 (3)
C4—C81.530 (4)C15—H150.98
C5—C61.371 (3)C16—O31.411 (3)
C5—C111.489 (3)C16—C181.500 (3)
C6—O21.383 (3)C16—C171.534 (3)
C7—O11.398 (4)C17—O21.465 (2)
C7—H7A0.96C17—H170.98
C7—H7B0.96C18—C191.315 (3)
C7—H7C0.96C18—H180.93
C8—C91.548 (4)C19—H190.93
C8—H8A0.97C20—O31.417 (3)
C8—H8B0.97C20—H20A0.96
C9—N11.476 (4)C20—H20B0.96
C9—C101.539 (3)C20—H20C0.96
C9—H90.98C21—O41.202 (3)
C10—C191.513 (3)C21—O51.330 (3)
C10—C141.546 (3)C22—O51.441 (3)
C10—C111.554 (3)C22—H22A0.96
C11—C171.534 (3)C22—H22B0.96
C11—C121.545 (3)C22—H22C0.96
C12—C131.502 (4)C23—N21.137 (3)
C12—H12A0.97C23—N11.296 (3)
C12—H12B0.97
O1—C1—C6120.1 (2)N1—C13—H13B110.0
O1—C1—C2122.9 (2)C12—C13—H13B110.0
C6—C1—C2116.7 (2)H13A—C13—H13B108.3
C3—C2—C1122.1 (2)C15—C14—C10108.61 (18)
C3—C2—H2119.0C15—C14—H14A110.0
C1—C2—H2119.0C10—C14—H14A110.0
C2—C3—C4120.5 (2)C15—C14—H14B110.0
C2—C3—H3119.8C10—C14—H14B110.0
C4—C3—H3119.7H14A—C14—H14B108.3
C5—C4—C3116.5 (2)C21—C15—C14113.87 (19)
C5—C4—C8117.3 (2)C21—C15—C16108.75 (19)
C3—C4—C8125.3 (2)C14—C15—C16110.19 (18)
C6—C5—C4122.5 (2)C21—C15—H15107.9
C6—C5—C11109.66 (19)C14—C15—H15107.9
C4—C5—C11126.3 (2)C16—C15—H15107.9
C5—C6—C1120.6 (2)O3—C16—C18107.77 (17)
C5—C6—O2113.00 (18)O3—C16—C17114.96 (17)
C1—C6—O2126.1 (2)C18—C16—C17110.04 (17)
O1—C7—H7A109.5O3—C16—C15113.17 (17)
O1—C7—H7B109.5C18—C16—C15107.72 (18)
H7A—C7—H7B109.5C17—C16—C15102.94 (16)
O1—C7—H7C109.5O2—C17—C16113.33 (17)
H7A—C7—H7C109.5O2—C17—C11107.43 (16)
H7B—C7—H7C109.5C16—C17—C11108.24 (16)
C4—C8—C9115.4 (2)O2—C17—H17109.3
C4—C8—H8A108.4C16—C17—H17109.3
C9—C8—H8A108.4C11—C17—H17109.3
C4—C8—H8B108.4C19—C18—C16115.9 (2)
C9—C8—H8B108.4C19—C18—H18122.0
H8A—C8—H8B107.5C16—C18—H18122.0
N1—C9—C10107.2 (2)C18—C19—C10114.7 (2)
N1—C9—C8111.4 (2)C18—C19—H19122.6
C10—C9—C8113.1 (2)C10—C19—H19122.6
N1—C9—H9108.3O3—C20—H20A109.5
C10—C9—H9108.3O3—C20—H20B109.5
C8—C9—H9108.3H20A—C20—H20B109.5
C19—C10—C9113.6 (2)O3—C20—H20C109.5
C19—C10—C14104.20 (19)H20A—C20—H20C109.5
C9—C10—C14116.56 (19)H20B—C20—H20C109.5
C19—C10—C11107.17 (18)O4—C21—O5124.2 (2)
C9—C10—C11105.77 (18)O4—C21—C15125.5 (2)
C14—C10—C11109.19 (18)O5—C21—C15110.3 (2)
C5—C11—C17101.88 (17)O5—C22—H22A109.5
C5—C11—C12113.82 (19)O5—C22—H22B109.5
C17—C11—C12111.83 (18)H22A—C22—H22B109.5
C5—C11—C10105.35 (18)O5—C22—H22C109.5
C17—C11—C10112.28 (18)H22A—C22—H22C109.5
C12—C11—C10111.22 (18)H22B—C22—H22C109.5
C13—C12—C11112.8 (2)N2—C23—N1177.9 (3)
C13—C12—H12A109.0C23—N1—C9121.4 (2)
C11—C12—H12A109.0C23—N1—C13119.8 (2)
C13—C12—H12B109.0C9—N1—C13116.3 (2)
C11—C12—H12B109.0C1—O1—C7116.9 (2)
H12A—C12—H12B107.8C6—O2—C17106.83 (16)
N1—C13—C12108.7 (2)C16—O3—C20116.63 (18)
N1—C13—H13A110.0C21—O5—C22116.6 (2)
C12—C13—H13A110.0
O1—C1—C2—C3171.3 (3)C10—C14—C15—C1613.0 (2)
C6—C1—C2—C33.1 (4)C21—C15—C16—O338.3 (2)
C1—C2—C3—C44.1 (4)C14—C15—C16—O3163.76 (18)
C2—C3—C4—C52.6 (3)C21—C15—C16—C1880.7 (2)
C2—C3—C4—C8166.4 (2)C14—C15—C16—C1844.7 (2)
C3—C4—C5—C610.5 (3)C21—C15—C16—C17162.99 (18)
C8—C4—C5—C6159.4 (2)C14—C15—C16—C1771.5 (2)
C3—C4—C5—C11175.0 (2)O3—C16—C17—O255.4 (2)
C8—C4—C5—C115.1 (3)C18—C16—C17—O266.5 (2)
C4—C5—C6—C111.9 (3)C15—C16—C17—O2178.91 (16)
C11—C5—C6—C1178.7 (2)O3—C16—C17—C11174.44 (16)
C4—C5—C6—O2162.9 (2)C18—C16—C17—C1152.6 (2)
C11—C5—C6—O23.9 (2)C15—C16—C17—C1162.0 (2)
O1—C1—C6—C5179.3 (2)C5—C11—C17—O210.9 (2)
C2—C1—C6—C54.7 (3)C12—C11—C17—O2111.03 (19)
O1—C1—C6—O25.2 (4)C10—C11—C17—O2123.14 (18)
C2—C1—C6—O2169.4 (2)C5—C11—C17—C16111.83 (18)
C5—C4—C8—C92.8 (3)C12—C11—C17—C16126.25 (19)
C3—C4—C8—C9166.1 (2)C10—C11—C17—C160.4 (2)
C4—C8—C9—N194.0 (3)O3—C16—C18—C19178.53 (19)
C4—C8—C9—C1026.8 (3)C17—C16—C18—C1955.4 (3)
N1—C9—C10—C19179.2 (2)C15—C16—C18—C1956.1 (3)
C8—C9—C10—C1956.0 (3)C16—C18—C19—C102.1 (3)
N1—C9—C10—C1459.6 (3)C9—C10—C19—C18172.41 (19)
C8—C9—C10—C14177.2 (2)C14—C10—C19—C1859.7 (3)
N1—C9—C10—C1161.9 (2)C11—C10—C19—C1856.0 (3)
C8—C9—C10—C1161.3 (2)C14—C15—C21—O438.1 (3)
C6—C5—C11—C179.0 (2)C16—C15—C21—O485.2 (3)
C4—C5—C11—C17157.1 (2)C14—C15—C21—O5143.4 (2)
C6—C5—C11—C12111.5 (2)C16—C15—C21—O593.3 (2)
C4—C5—C11—C1282.3 (3)N2—C23—N1—C9154 (9)
C6—C5—C11—C10126.37 (19)N2—C23—N1—C1345 (9)
C4—C5—C11—C1039.8 (3)C10—C9—N1—C23133.5 (3)
C19—C10—C11—C557.1 (2)C8—C9—N1—C23102.3 (3)
C9—C10—C11—C564.4 (2)C10—C9—N1—C1364.4 (3)
C14—C10—C11—C5169.41 (18)C8—C9—N1—C1359.9 (3)
C19—C10—C11—C1753.0 (2)C12—C13—N1—C23141.3 (3)
C9—C10—C11—C17174.49 (18)C12—C13—N1—C956.2 (3)
C14—C10—C11—C1759.3 (2)C6—C1—O1—C7114.6 (3)
C19—C10—C11—C12179.1 (2)C2—C1—O1—C771.2 (4)
C9—C10—C11—C1259.3 (2)C5—C6—O2—C173.5 (2)
C14—C10—C11—C1266.8 (2)C1—C6—O2—C17170.9 (2)
C5—C11—C12—C1364.4 (3)C16—C17—O2—C6110.32 (19)
C17—C11—C12—C13179.20 (18)C11—C17—O2—C69.2 (2)
C10—C11—C12—C1354.4 (3)C18—C16—O3—C20166.3 (2)
C11—C12—C13—N148.9 (3)C17—C16—O3—C2043.2 (2)
C19—C10—C14—C1564.4 (2)C15—C16—O3—C2074.7 (2)
C9—C10—C14—C15169.59 (19)O4—C21—O5—C224.0 (4)
C11—C10—C14—C1549.9 (2)C15—C21—O5—C22174.5 (2)
C10—C14—C15—C21135.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O50.962.553.120 (3)118
C3—H3···O1i0.932.543.399 (3)153
C9—H9···N2ii0.982.493.467 (4)179
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H24N2O5
Mr408.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.1880 (3), 11.1380 (4), 24.6389 (10)
V3)1972.59 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.63 × 0.44 × 0.27
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.953, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
9908, 2328, 2035
Rint0.021
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.04
No. of reflections2328
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O50.962.553.120 (3)118
C3—H3···O1i0.932.543.399 (3)153
C9—H9···N2ii0.982.493.467 (4)179
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Scientific and Technical Research Council of Turkey (TUBITAK, project No. 107 T676). We also thank the Turkish Grain Board (TMO) for the supply of thebaine.

References

First citationBentley, K. W. & Hardy, D. G. (1967). J. Am. Chem. Soc. 89, 3267–3273.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDerrick, I., Coop, A., Al-Mousawi, S. M., Husbands, S. M. & Lewis, J. W. (2000). Tetrahedron Lett. 41, 7571–7576.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoskin, P. J. & Hanks, G. W. (1991). Drugs, 41, 326–338.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLenz, G. R., Evans, S. M., Walters, D. E. & Hopfinger, A. J. (1986). Opiates, p. 65. London: Academic Press.  Google Scholar
First citationLiu, H., Zhong, B., Lui, C., Wu, B. & Gong, Z. (2005). Acta Chim. Slov. 52, 80–85.  CAS Google Scholar
First citationMarton, J., Miklos, S., Hosztafi, S. & Makleit, S. (1995). Synth. Commun. 25, 829–848.  CrossRef CAS Web of Science Google Scholar
First citationOdabaşoğlu, M., Yavuz, S., Pamir, Ö., Yıldırır, Y. & Büyükgüngör, O. (2009). Acta Cryst. E65, o864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParrish, D., Chen, W., Coop, A. & Deschamps, J. R. (2004). Acta Cryst. E60, o793–o794.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTakemori, A. E., Hayashi, G. & Smits, S. E. (1972). Eur. J. Pharmacol. 20, 85–91.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2205-o2206
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds