organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-acetyl-3-(4-chloro­anilino)butanoate

aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bangalore 560 012, India, cDepartment of Physics, The Madura College, Madurai 625 011, India, and dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk

(Received 29 July 2009; accepted 4 August 2009; online 8 August 2009)

The title compound, C14H18ClNO3, adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups trans. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds are observed.

Related literature

For the crystal structure of ethyl 2-acetyl-3-anilinobutanoate, see: Priya et al. (2006[Priya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367-o5368.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18ClNO3

  • Mr = 283.74

  • Triclinic, [P \overline 1]

  • a = 6.9161 (2) Å

  • b = 10.1319 (3) Å

  • c = 11.4063 (3) Å

  • α = 87.511 (10)°

  • β = 80.873 (10)°

  • γ = 73.367 (2)°

  • V = 756.14 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.17 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.972

  • 14994 measured reflections

  • 4229 independent reflections

  • 3037 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.132

  • S = 1.04

  • 4229 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O12i 0.85 (2) 2.185 (19) 3.0282 (17) 170 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ethyl butanoate is commonly used as an artificial flavoring agent in alcoholic beverages, perfumery products and as a plasticizer for cellulose. The crystal structure of ethyl 2-acetyl-3-anilinobutanoate has been reported (Priya et al., 2006).

In the title molecule (Fig. 1), there are three planar subunits viz. the chlorophenyl amine (C1-C6/N7/Cl1), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The chlorophenyl amino ring is inclined at angles of 76.28 (9) and 3.48 (7)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.9 (1)° to the ethyl acetate group. The molecule adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, i.e. from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range 157.20 (14)-178.59 (15)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an R22(12) ring motif (Fig. 2) (Bernstein et al., 1995).

Related literature top

For the crystal structure of ethyl 2-acetyl-3-anilinobutanoate, see: Priya et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of acetaldehyde (22.5 ml), ethyl acetoacetate (6.3 ml) and aniline (6.5 ml) was placed in a round bottomed flask. The contents were stirred at 273 K to 278 K for about 5 h under nitrogen atmosphere. A paste-like solid was formed, which was initially washed with benzene, then chloroform and then extracted with diethyl ether. The extract allowed to evaporate at room temperature yielded the product with crystalline nature. The resulting compound was recrystallized from diethyl ether (yield 88%, m. p. 357 K).

Refinement top

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the crystal structur of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms other than H7 have been omitted for clarity.
Ethyl 2-acetyl-3-(4-chloroanilino)butanoate top
Crystal data top
C14H18ClNO3Z = 2
Mr = 283.74F(000) = 300
Triclinic, P1Dx = 1.246 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.9161 (2) ÅCell parameters from 25 reflections
b = 10.1319 (3) Åθ = 2–29.6°
c = 11.4063 (3) ŵ = 0.26 mm1
α = 87.511 (10)°T = 293 K
β = 80.873 (10)°Block, colourless
γ = 73.367 (2)°0.17 × 0.14 × 0.11 mm
V = 756.14 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4229 independent reflections
Radiation source: fine-focus sealed tube3037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.958, Tmax = 0.972k = 1413
14994 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1581P]
where P = (Fo2 + 2Fc2)/3
4229 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H18ClNO3γ = 73.367 (2)°
Mr = 283.74V = 756.14 (4) Å3
Triclinic, P1Z = 2
a = 6.9161 (2) ÅMo Kα radiation
b = 10.1319 (3) ŵ = 0.26 mm1
c = 11.4063 (3) ÅT = 293 K
α = 87.511 (10)°0.17 × 0.14 × 0.11 mm
β = 80.873 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4229 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3037 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.017
14994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
4229 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H70.352 (3)0.086 (2)0.6502 (16)0.060 (5)*
C10.3175 (2)0.22108 (14)0.76810 (12)0.0460 (3)
C20.2162 (3)0.35445 (16)0.80981 (14)0.0591 (4)
H20.12510.41380.76600.071*
C30.2498 (3)0.39921 (17)0.91543 (15)0.0602 (4)
H30.18280.48870.94160.072*
C40.3817 (3)0.31215 (17)0.98199 (13)0.0524 (4)
C50.4832 (3)0.18015 (17)0.94306 (15)0.0572 (4)
H50.57300.12150.98800.069*
C60.4516 (2)0.13524 (16)0.83781 (14)0.0540 (4)
H60.52080.04580.81220.065*
C80.1319 (2)0.23376 (15)0.59384 (13)0.0484 (3)
H80.09950.33430.59860.058*
C90.0608 (3)0.1919 (2)0.63979 (19)0.0810 (6)
H9A0.03280.09390.63250.121*
H9B0.16630.23720.59410.121*
H9C0.10510.21810.72170.121*
C100.2170 (2)0.18944 (13)0.46426 (12)0.0422 (3)
H100.24160.08960.45860.051*
C110.4189 (2)0.22321 (14)0.42512 (13)0.0463 (3)
C130.4247 (3)0.36782 (16)0.44036 (17)0.0616 (4)
H13A0.41740.38600.52310.092*
H13B0.31070.43070.41050.092*
H13C0.54960.37960.39730.092*
C140.0697 (2)0.25923 (14)0.37995 (12)0.0432 (3)
C170.0456 (3)0.23396 (18)0.20012 (14)0.0559 (4)
H17A0.00270.31050.16180.067*
H17B0.18810.26770.23510.067*
C180.0192 (3)0.1244 (2)0.11202 (17)0.0780 (6)
H18A0.12280.08950.07990.117*
H18B0.09580.16180.04910.117*
H18C0.06760.05100.15000.117*
Cl10.41769 (9)0.37010 (6)1.11659 (4)0.07881 (19)
N70.3003 (2)0.17272 (14)0.66007 (12)0.0573 (4)
O120.56910 (18)0.13519 (11)0.38320 (12)0.0680 (4)
O150.03698 (19)0.37584 (11)0.38958 (10)0.0631 (3)
O160.07863 (16)0.17534 (10)0.29170 (9)0.0495 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (8)0.0423 (7)0.0411 (7)0.0058 (6)0.0133 (6)0.0036 (5)
C20.0749 (11)0.0443 (8)0.0519 (8)0.0033 (7)0.0283 (8)0.0011 (6)
C30.0746 (11)0.0474 (8)0.0547 (9)0.0044 (8)0.0212 (8)0.0063 (7)
C40.0587 (9)0.0610 (9)0.0429 (7)0.0220 (7)0.0148 (6)0.0021 (6)
C50.0584 (9)0.0591 (9)0.0549 (9)0.0104 (7)0.0259 (7)0.0102 (7)
C60.0589 (9)0.0448 (8)0.0538 (8)0.0012 (7)0.0209 (7)0.0029 (6)
C80.0551 (9)0.0445 (7)0.0434 (7)0.0071 (6)0.0148 (6)0.0014 (6)
C90.0745 (13)0.1022 (16)0.0686 (12)0.0333 (12)0.0067 (10)0.0151 (11)
C100.0506 (8)0.0312 (6)0.0456 (7)0.0067 (5)0.0186 (6)0.0019 (5)
C110.0504 (8)0.0383 (7)0.0478 (7)0.0038 (6)0.0150 (6)0.0059 (6)
C130.0561 (9)0.0457 (8)0.0833 (12)0.0162 (7)0.0042 (8)0.0155 (8)
C140.0468 (7)0.0388 (7)0.0446 (7)0.0084 (6)0.0151 (6)0.0025 (5)
C170.0531 (9)0.0669 (10)0.0467 (8)0.0071 (7)0.0219 (7)0.0042 (7)
C180.0826 (13)0.0905 (14)0.0631 (11)0.0141 (11)0.0310 (10)0.0209 (10)
Cl10.0954 (4)0.0974 (4)0.0552 (3)0.0350 (3)0.0299 (2)0.0060 (2)
N70.0747 (9)0.0408 (7)0.0489 (7)0.0062 (6)0.0282 (6)0.0037 (5)
O120.0566 (7)0.0485 (6)0.0866 (9)0.0013 (5)0.0009 (6)0.0141 (6)
O150.0747 (8)0.0439 (6)0.0632 (7)0.0080 (5)0.0318 (6)0.0089 (5)
O160.0562 (6)0.0443 (5)0.0487 (5)0.0062 (4)0.0232 (5)0.0065 (4)
Geometric parameters (Å, º) top
C1—N71.3802 (18)C10—C141.5173 (18)
C1—C21.397 (2)C10—C111.526 (2)
C1—C61.4002 (19)C10—H100.98
C2—C31.381 (2)C11—O121.2050 (17)
C2—H20.93C11—C131.495 (2)
C3—C41.374 (2)C13—H13A0.96
C3—H30.93C13—H13B0.96
C4—C51.376 (2)C13—H13C0.96
C4—Cl11.7457 (15)C14—O151.1995 (16)
C5—C61.372 (2)C14—O161.3282 (16)
C5—H50.93C17—O161.4562 (17)
C6—H60.93C17—C181.482 (2)
C8—N71.4617 (18)C17—H17A0.97
C8—C91.521 (3)C17—H17B0.97
C8—C101.537 (2)C18—H18A0.96
C8—H80.98C18—H18B0.96
C9—H9A0.96C18—H18C0.96
C9—H9B0.96N7—H70.854 (19)
C9—H9C0.96
N7—C1—C2123.61 (13)C11—C10—C8110.57 (11)
N7—C1—C6118.80 (13)C14—C10—H10108.5
C2—C1—C6117.51 (14)C11—C10—H10108.5
C3—C2—C1120.73 (14)C8—C10—H10108.5
C3—C2—H2119.6O12—C11—C13121.23 (15)
C1—C2—H2119.6O12—C11—C10120.56 (13)
C4—C3—C2120.30 (15)C13—C11—C10118.21 (12)
C4—C3—H3119.9C11—C13—H13A109.5
C2—C3—H3119.9C11—C13—H13B109.5
C3—C4—C5120.15 (14)H13A—C13—H13B109.5
C3—C4—Cl1119.42 (13)C11—C13—H13C109.5
C5—C4—Cl1120.43 (12)H13A—C13—H13C109.5
C6—C5—C4119.88 (14)H13B—C13—H13C109.5
C6—C5—H5120.1O15—C14—O16124.26 (13)
C4—C5—H5120.1O15—C14—C10124.71 (12)
C5—C6—C1121.43 (14)O16—C14—C10111.01 (11)
C5—C6—H6119.3O16—C17—C18108.05 (14)
C1—C6—H6119.3O16—C17—H17A110.1
N7—C8—C9113.62 (14)C18—C17—H17A110.1
N7—C8—C10105.08 (12)O16—C17—H17B110.1
C9—C8—C10112.39 (14)C18—C17—H17B110.1
N7—C8—H8108.5H17A—C17—H17B108.4
C9—C8—H8108.5C17—C18—H18A109.5
C10—C8—H8108.5C17—C18—H18B109.5
C8—C9—H9A109.5H18A—C18—H18B109.5
C8—C9—H9B109.5C17—C18—H18C109.5
H9A—C9—H9B109.5H18A—C18—H18C109.5
C8—C9—H9C109.5H18B—C18—H18C109.5
H9A—C9—H9C109.5C1—N7—C8124.19 (12)
H9B—C9—H9C109.5C1—N7—H7114.4 (12)
C14—C10—C11108.57 (12)C8—N7—H7114.5 (12)
C14—C10—C8112.08 (11)C14—O16—C17116.16 (11)
N7—C1—C2—C3175.94 (17)C8—C10—C11—O12126.22 (15)
C6—C1—C2—C30.6 (3)C14—C10—C11—C1369.60 (16)
C1—C2—C3—C40.9 (3)C8—C10—C11—C1353.73 (17)
C2—C3—C4—C50.8 (3)C11—C10—C14—O1585.49 (18)
C2—C3—C4—Cl1178.75 (14)C8—C10—C14—O1536.9 (2)
C3—C4—C5—C60.3 (3)C11—C10—C14—O1692.66 (13)
Cl1—C4—C5—C6179.17 (13)C8—C10—C14—O16144.92 (12)
C4—C5—C6—C10.1 (3)C2—C1—N7—C820.5 (3)
N7—C1—C6—C5176.54 (16)C6—C1—N7—C8162.99 (15)
C2—C1—C6—C50.2 (3)C9—C8—N7—C179.5 (2)
N7—C8—C10—C14172.73 (11)C10—C8—N7—C1157.20 (14)
C9—C8—C10—C1463.22 (17)O15—C14—O16—C172.3 (2)
N7—C8—C10—C1151.45 (15)C10—C14—O16—C17175.82 (12)
C9—C8—C10—C11175.49 (13)C18—C17—O16—C14178.59 (15)
C14—C10—C11—O12110.45 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O12i0.85 (2)2.185 (19)3.0282 (17)170 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H18ClNO3
Mr283.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9161 (2), 10.1319 (3), 11.4063 (3)
α, β, γ (°)87.511 (10), 80.873 (10), 73.367 (2)
V3)756.14 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.17 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
14994, 4229, 3037
Rint0.017
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.04
No. of reflections4229
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O12i0.85 (2)2.185 (19)3.0282 (17)170 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA–DST programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPriya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, o5367–o5368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds