organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-N′-(4-meth­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China
*Correspondence e-mail: shidahua@yahoo.cn

(Received 31 July 2009; accepted 1 August 2009; online 8 August 2009)

The title compound, C15H14N2O3, was synthesized by the reaction of 4-methoxy­benzaldehyde with 4-hydroxy­benzohydrazide in methanol. The mol­ecule adopts an E configuration about the C=N bond. The two benzene rings make a dihedral angle of 46.6 (2)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to (001) through O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the anti­bacterial activity of hydrazone compounds, see: Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For crystal structures of hydrazone compounds, see: Abdul Alhadi et al. (2009[Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Cao & Lu (2009[Cao, G.-B. & Lu, X.-H. (2009). Acta Cryst. E65, o1600.]); Qu & Cao (2009[Qu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Orthorhombic, P b c a

  • a = 11.947 (2) Å

  • b = 7.555 (1) Å

  • c = 29.452 (2) Å

  • V = 2658.3 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 15205 measured reflections

  • 2897 independent reflections

  • 2030 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.04

  • 2897 reflections

  • 187 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.91 2.7271 (15) 171
N2—H2A⋯O2ii 0.90 (1) 2.12 (1) 3.0216 (17) 173 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds are a kind of important materials in biological and medicinal chemistry. They have been widely investigated for their antibacterial activities (Cukurovali et al., 2006). Recently, a number of hydrazone compounds have been prepared and structurally characterized (Abdul Alhadi et al., 2009; Mohd Lair et al., 2009; Cao & Lu, 2009; Qu & Cao, 2009). In this paper, the author reports the crystal structure of the title hydrazone compound.

The molecule of the title compound adopts an E configuration about the CN bond (Fig. 1). The two benzene rings make a dihedral angle of 46.56 (7)°. The C8/N1/N2/C9/O2 plane makes dihedral angles of 8.2 (1) and 54.5 (1)°, respectively, with the C1—C6 and C10—C15 benzene rings. All the bond lengths are normal (Allen et al., 1987).

In the crystal structure, molecules are linked through N—H···O and O—H···O hydrogen bonds (Table 1), forming a two-dimensional network parallel to the (001) [Fig. 2].

Related literature top

For the antibacterial activity of hydrazone compounds, see: Cukurovali et al. (2006). For crystal structures of hydrazone compounds, see: Abdul Alhadi et al. (2009); Mohd Lair et al. (2009); Cao & Lu (2009); Qu & Cao (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Methoxybenzaldehyde (13.6 mg, 0.1 mmol) and 4-hydroxybenzohydrazide (15.2 mg, 0.1 mmol) were mixed and refluxed in a methanol solution. After 30 min, the clear solution was evaporated to give colourless crystallites, which were recrystallized from methanol to form single crystals.

Refinement top

Atom H2A was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions [O-H = 0.82 Å and C-H = 0.93–0.96 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O and C7).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
4-Hydroxy-N'-(4-methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O3F(000) = 1136
Mr = 270.28Dx = 1.351 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2853 reflections
a = 11.947 (2) Åθ = 2.6–25.0°
b = 7.555 (1) ŵ = 0.10 mm1
c = 29.452 (2) ÅT = 298 K
V = 2658.3 (6) Å3Block, colourless
Z = 80.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2897 independent reflections
Radiation source: fine-focus sealed tube2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1315
Tmin = 0.981, Tmax = 0.984k = 99
15205 measured reflectionsl = 3337
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0418P)2 + 0.5702P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2897 reflectionsΔρmax = 0.18 e Å3
187 parametersΔρmin = 0.15 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0025 (7)
Crystal data top
C15H14N2O3V = 2658.3 (6) Å3
Mr = 270.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.947 (2) ŵ = 0.10 mm1
b = 7.555 (1) ÅT = 298 K
c = 29.452 (2) Å0.20 × 0.20 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2030 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.035
15205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
2897 reflectionsΔρmin = 0.15 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.77001 (10)0.20495 (17)0.58903 (4)0.0428 (3)
N20.75665 (11)0.28526 (17)0.63096 (4)0.0427 (3)
O10.93859 (13)0.00418 (19)0.39100 (4)0.0755 (4)
O20.60541 (8)0.11510 (14)0.64634 (3)0.0460 (3)
O30.61014 (9)0.54911 (17)0.82831 (3)0.0535 (3)
H30.54390.57090.83290.080*
C10.86784 (12)0.2014 (2)0.51899 (5)0.0407 (4)
C20.79314 (13)0.0874 (2)0.49804 (5)0.0487 (4)
H20.72790.05560.51320.058*
C30.81269 (14)0.0203 (2)0.45558 (5)0.0535 (4)
H3A0.76160.05680.44230.064*
C40.90936 (15)0.0683 (2)0.43253 (5)0.0518 (4)
C50.98315 (15)0.1872 (2)0.45215 (6)0.0567 (5)
H51.04650.22320.43630.068*
C60.96304 (14)0.2522 (2)0.49499 (6)0.0498 (4)
H61.01350.33080.50810.060*
C70.8819 (2)0.1482 (3)0.37488 (7)0.0800 (6)
H7A0.88490.23960.39750.120*
H7B0.91710.18930.34760.120*
H7C0.80520.11900.36870.120*
C80.84886 (12)0.2682 (2)0.56475 (5)0.0426 (4)
H80.89440.35740.57630.051*
C90.67022 (11)0.23670 (19)0.65719 (5)0.0363 (3)
C100.65784 (11)0.33283 (19)0.70077 (5)0.0359 (3)
C110.74372 (12)0.3390 (2)0.73227 (5)0.0418 (4)
H110.81390.29480.72470.050*
C120.72609 (12)0.4102 (2)0.77481 (5)0.0460 (4)
H120.78390.41140.79600.055*
C130.62246 (12)0.4800 (2)0.78614 (5)0.0391 (4)
C140.53678 (12)0.4772 (2)0.75443 (5)0.0414 (4)
H140.46750.52610.76150.050*
C150.55430 (12)0.4021 (2)0.71250 (5)0.0422 (4)
H150.49580.39770.69170.051*
H2A0.8008 (14)0.3787 (19)0.6374 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0453 (7)0.0455 (8)0.0375 (7)0.0003 (6)0.0089 (6)0.0040 (6)
N20.0450 (7)0.0437 (7)0.0393 (7)0.0044 (6)0.0098 (6)0.0066 (6)
O10.1010 (11)0.0751 (10)0.0503 (8)0.0109 (8)0.0234 (7)0.0152 (6)
O20.0436 (6)0.0499 (7)0.0447 (6)0.0074 (5)0.0081 (5)0.0078 (5)
O30.0464 (6)0.0737 (8)0.0404 (6)0.0078 (6)0.0045 (5)0.0117 (5)
C10.0425 (8)0.0401 (8)0.0396 (8)0.0018 (7)0.0081 (6)0.0033 (6)
C20.0471 (9)0.0513 (10)0.0478 (9)0.0039 (8)0.0096 (7)0.0015 (7)
C30.0601 (11)0.0542 (10)0.0464 (9)0.0064 (8)0.0015 (8)0.0035 (8)
C40.0642 (11)0.0501 (10)0.0412 (9)0.0023 (9)0.0109 (8)0.0001 (7)
C50.0597 (10)0.0585 (11)0.0519 (10)0.0062 (9)0.0217 (8)0.0006 (8)
C60.0501 (9)0.0482 (9)0.0512 (9)0.0069 (8)0.0115 (7)0.0013 (7)
C70.1133 (17)0.0747 (14)0.0520 (11)0.0059 (14)0.0008 (11)0.0156 (10)
C80.0411 (8)0.0418 (9)0.0449 (8)0.0003 (7)0.0058 (7)0.0002 (7)
C90.0356 (7)0.0365 (8)0.0369 (8)0.0022 (6)0.0015 (6)0.0018 (6)
C100.0359 (7)0.0355 (8)0.0363 (7)0.0006 (6)0.0051 (6)0.0011 (6)
C110.0320 (7)0.0495 (9)0.0438 (8)0.0056 (7)0.0050 (6)0.0003 (7)
C120.0364 (8)0.0616 (11)0.0401 (8)0.0057 (7)0.0030 (6)0.0039 (7)
C130.0401 (8)0.0411 (8)0.0360 (8)0.0000 (7)0.0059 (6)0.0005 (6)
C140.0319 (7)0.0442 (9)0.0480 (9)0.0034 (6)0.0056 (6)0.0051 (7)
C150.0339 (8)0.0477 (9)0.0449 (8)0.0021 (7)0.0019 (6)0.0039 (7)
Geometric parameters (Å, º) top
N1—C81.2758 (18)C5—H50.93
N1—N21.3850 (16)C6—H60.93
N2—C91.3408 (18)C7—H7A0.96
N2—H2A0.901 (9)C7—H7B0.96
O1—C41.3610 (19)C7—H7C0.96
O1—C71.418 (2)C8—H80.93
O2—C91.2431 (17)C9—C101.4822 (19)
O3—C131.3554 (17)C10—C111.3841 (19)
O3—H30.82C10—C151.3868 (19)
C1—C21.385 (2)C11—C121.3797 (19)
C1—C61.393 (2)C11—H110.93
C1—C81.457 (2)C12—C131.386 (2)
C2—C31.370 (2)C12—H120.93
C2—H20.93C13—C141.386 (2)
C3—C41.388 (2)C14—C151.375 (2)
C3—H3A0.93C14—H140.93
C4—C51.385 (2)C15—H150.93
C5—C61.375 (2)
C8—N1—N2114.89 (13)O1—C7—H7C109.5
C9—N2—N1118.86 (13)H7A—C7—H7C109.5
C9—N2—H2A123.0 (12)H7B—C7—H7C109.5
N1—N2—H2A117.5 (12)N1—C8—C1120.25 (14)
C4—O1—C7117.85 (15)N1—C8—H8119.9
C13—O3—H3109.5C1—C8—H8119.9
C2—C1—C6118.11 (14)O2—C9—N2122.26 (13)
C2—C1—C8121.81 (13)O2—C9—C10121.50 (12)
C6—C1—C8120.08 (14)N2—C9—C10116.22 (13)
C3—C2—C1121.80 (15)C11—C10—C15118.78 (13)
C3—C2—H2119.1C11—C10—C9121.54 (12)
C1—C2—H2119.1C15—C10—C9119.31 (13)
C2—C3—C4119.46 (16)C12—C11—C10120.58 (13)
C2—C3—H3A120.3C12—C11—H11119.7
C4—C3—H3A120.3C10—C11—H11119.7
O1—C4—C5116.26 (15)C11—C12—C13120.21 (13)
O1—C4—C3124.07 (16)C11—C12—H12119.9
C5—C4—C3119.67 (15)C13—C12—H12119.9
C6—C5—C4120.22 (15)O3—C13—C14122.91 (13)
C6—C5—H5119.9O3—C13—C12117.64 (13)
C4—C5—H5119.9C14—C13—C12119.44 (13)
C5—C6—C1120.67 (16)C15—C14—C13119.94 (13)
C5—C6—H6119.7C15—C14—H14120.0
C1—C6—H6119.7C13—C14—H14120.0
O1—C7—H7A109.5C14—C15—C10121.01 (13)
O1—C7—H7B109.5C14—C15—H15119.5
H7A—C7—H7B109.5C10—C15—H15119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.912.7271 (15)171
N2—H2A···O2ii0.90 (1)2.12 (1)3.0216 (17)173 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.947 (2), 7.555 (1), 29.452 (2)
V3)2658.3 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
15205, 2897, 2030
Rint0.035
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.04
No. of reflections2897
No. of parameters187
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.912.7271 (15)171
N2—H2A···O2ii0.90 (1)2.12 (1)3.0216 (17)173 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z.
 

Acknowledgements

The present study was supported by the Natural Science Foundation of Huaihai Institute of Technology (Z2008022).

References

First citationAbdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009). Acta Cryst. E65, o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z. & Cao, G.-B. (2009). Acta Cryst. E65, o1705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds