organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl trans-3-(4-bromo­phen­yl)-2-methyl­isoxazolidine-4,5-di­carboxyl­ate

aDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts & Science, Gazi University, Ankara, Turkey, cChemical Technology Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Kınıklı, Denizli, Turkey, and dDepartment of Chemistry, Faculty of Arts & Science, Kırıkkale University, Kırıkkale, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 31 July 2009; accepted 15 August 2009; online 22 August 2009)

In the title compound, C14H16BrNO5, the isoxazolidine ring adopts an envelope conformation, with the N atom at the flap. In the crystal, inter­molecular C—H⋯N and C—H⋯O hydrogen bonds generate R33(18) ring motifs which are fused into a ribbon-like structure extending along the b axis.

Related literature

For general background, see: Confalone & Huie (1988[Confalone, P. N. & Huie, E. M. (1988). Org. React. 36, 1-173.]); Torssell (1988[Torssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, edited by H. Feuer, pp. 75-93. New York: VCH.]); Frederickson (1997[Frederickson, M. (1997). Tetrahedron, 53, 403-425.]); Gothelf & Jorgensen (1998[Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863-909.]); Chiacchio et al. (2003[Chiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717-2723.]); Padwa et al. (1981[Padwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc. 103, 4974-4975.], 1984[Padwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem. 49, 282-288.]); Ochiai et al. (1967[Ochiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641-2648.]); Baldwin & Aube (1987[Baldwin, S. W. & Aube, J. (1987). Tetrahedron Lett. 28, 179-182.]); Heaney et al. (2001[Heaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373-378.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16BrNO5

  • Mr = 358.19

  • Monoclinic, P 21 /c

  • a = 10.9020 (4) Å

  • b = 8.1780 (3) Å

  • c = 17.8127 (8) Å

  • β = 101.622 (3)°

  • V = 1555.56 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.67 mm−1

  • T = 296 K

  • 0.71 × 0.60 × 0.45 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.327, Tmax = 0.480

  • 15678 measured reflections

  • 3232 independent reflections

  • 2696 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.101

  • S = 1.12

  • 3232 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.93 2.56 3.492 (4) 179
C12—H12C⋯O1ii 0.96 2.52 3.434 (5) 158
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The 1,3-dipolar cycloaddition of nitrones and alkenes is a powerful synthetic device that allows up to three new stereogenic centers to be assembled in a stereospecific manner in a single step (Confalone & Huie, 1988; Torssell, 1988; Frederickson, 1997; Gothelf & Jorgensen, 1998). Among these N and O containing five-membered heterocycles, isoxazolidines and isoxazoline derivatives have emerged as important candidates and have been shown to display useful anticancer and antiviral properties (Chiacchio et al., 2003).

The syntheses of isoxazolidine derivatives is an important subject in organic chemistry because they are found in the structure of most natural compounds and drugs. In recent years, isoxazolidine derivatives have been synthesized in high yield via intermolecular cycloaddition of N-methylnitrone with disubstituted olefins and are employed for biological evaluation.

These isoxazolidines are used in the syntheses of β-lactams (Padwa et al., 1981) which are of value in the treatment of bacterial infections (Ochiai et al., 1967), occur as natural products (Baldwin & Aube, 1987), serve as versatile synthetic intermediates (Padwa et al., 1984), and are biologically interesting compounds. In view of the interest shown in these compounds, we report herein the crystal structure of the title compound, (I).

The overall view and atom-labelling of the molecule of (I) are displayed in Fig. 1. The isoxazolidine ring (O1/N1/C7-C9) adopts an envelope conformation, with atom N1 displaced by 0.326 (2) Å from the plane of the other ring atoms (Cremer & Pople, 1975).

The crystal packing is stabilized by intermolecular C—H···N and C—H···O hydrogen bonds (Table 1). As shown in Fig. 2, these hydrogen bonds form R33(18) motifs which are fused to form ribbon-like structure extending along the b axis.

Related literature top

For general background, see: Confalone & Huie (1988); Torssell (1988); Frederickson (1997); Gothelf & Jorgensen (1998); Chiacchio et al. (2003); Padwa et al. (1981, 1984); Ochiai et al. (1967); Baldwin & Aube (1987); Heaney et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For ring conformations, see: Cremer & Pople (1975).

Experimental top

N-Methyl-C-(4-bromophenyl)nitrone was prepared from 4-bromo benzaldehyde, N-methyl-hydroxylamine hydrochloride and sodium carbonate in CH2Cl2 according to the literature method (Heaney et al., 2001). For the preparation of the title compound, N-methyl-C-(4-bromophenyl) nitrone (453 mg, 3 mmol) and dimethylmaleate (475 mg, 3,3 mmol) were dissolved in benzene (50 ml). The reaction mixture was refluxed for 9 h, and monitored by TLC. After evaporation of the solvent, the reaction mixture was separated by column chromatography, using a mixture of hexane-ethyl acetate (1:2) as the eluent. The trans-isomer was recrystallized from methanol in 3 d (m.p. 354–355 K).

Refinement top

H atoms were positioned geometrically (C-H = 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded R33(18) motifs. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate hydrogen bonds. [Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, 1/2 + y, 1/2 - z; (iii) 1 - x, y - 1/2, 1/2 - z].
[Figure 3] Fig. 3. Preparation of the title compound.
(3R,4S,5R)-Dimethyl trans-3-(4-bromophenyl)-2-methylisoxazolidine-4,5-dicarboxylate top
Crystal data top
C14H16BrNO5F(000) = 728
Mr = 358.19Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15678 reflections
a = 10.9020 (4) Åθ = 1.9–28.0°
b = 8.1780 (3) ŵ = 2.67 mm1
c = 17.8127 (8) ÅT = 296 K
β = 101.622 (3)°Block, colourless
V = 1555.56 (11) Å30.71 × 0.60 × 0.45 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3232 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2696 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 1.9°
ω–scan rotation methodh = 1313
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.327, Tmax = 0.480l = 2222
15678 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0399P)2 + 1.0321P]
where P = (Fo2 + 2Fc2)/3
3232 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C14H16BrNO5V = 1555.56 (11) Å3
Mr = 358.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9020 (4) ŵ = 2.67 mm1
b = 8.1780 (3) ÅT = 296 K
c = 17.8127 (8) Å0.71 × 0.60 × 0.45 mm
β = 101.622 (3)°
Data collection top
Stoe IPDS II
diffractometer
3232 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2696 reflections with I > 2σ(I)
Tmin = 0.327, Tmax = 0.480Rint = 0.043
15678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.12Δρmax = 0.49 e Å3
3232 reflectionsΔρmin = 0.93 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.4201 (3)0.5503 (4)0.18030 (16)0.0460 (7)
H20.41490.49780.22590.055*
C80.1314 (2)0.4572 (3)0.16330 (15)0.0371 (5)
H80.17540.52070.20720.044*
C50.4354 (3)0.7096 (5)0.04589 (18)0.0617 (9)
H50.43990.76420.00070.074*
C120.0010 (4)0.8290 (4)0.0637 (3)0.0793 (12)
H12C0.03110.93800.07610.095*
H12B0.08500.82160.06850.095*
H12A0.00740.80370.01200.095*
C110.0347 (3)0.5632 (3)0.11402 (16)0.0403 (6)
O30.0753 (2)0.7144 (3)0.11549 (15)0.0625 (6)
C100.3202 (3)0.1297 (5)0.1037 (2)0.0643 (9)
H10C0.39900.17230.09650.077*
H10B0.26420.11920.05490.077*
H10A0.33290.02430.12780.077*
C40.5204 (3)0.7411 (4)0.11187 (18)0.0473 (7)
C60.3420 (3)0.5947 (5)0.04732 (18)0.0575 (8)
H60.28440.57150.00250.069*
N10.2659 (2)0.2410 (3)0.15238 (14)0.0448 (5)
O10.14367 (19)0.1690 (2)0.15537 (13)0.0506 (5)
O20.0615 (2)0.5161 (3)0.07465 (15)0.0670 (7)
C130.0534 (3)0.2653 (4)0.17647 (19)0.0497 (7)
C140.2378 (3)0.3749 (6)0.2055 (3)0.0783 (12)
H14C0.26370.45660.23780.094*
H14B0.26670.26960.21830.094*
H14A0.27280.39940.15290.094*
O40.1095 (2)0.1619 (3)0.1377 (2)0.0846 (9)
O50.1029 (2)0.3738 (3)0.21707 (14)0.0628 (6)
Br10.64870 (3)0.89981 (5)0.11195 (2)0.06568 (15)
C30.5147 (3)0.6630 (4)0.17970 (17)0.0462 (7)
H30.57320.68570.22420.055*
C70.2260 (2)0.3988 (3)0.11494 (15)0.0385 (6)
H70.18170.37880.06220.046*
C90.0865 (3)0.2939 (4)0.19170 (16)0.0432 (6)
H90.11850.28630.24710.052*
C10.3332 (2)0.5142 (4)0.11427 (15)0.0400 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0426 (14)0.0554 (18)0.0379 (14)0.0027 (13)0.0028 (12)0.0067 (13)
C80.0342 (12)0.0394 (14)0.0357 (13)0.0002 (11)0.0024 (11)0.0037 (11)
C50.0592 (19)0.082 (3)0.0438 (17)0.0175 (18)0.0108 (15)0.0108 (17)
C120.089 (3)0.0383 (18)0.097 (3)0.0084 (18)0.013 (2)0.005 (2)
C110.0381 (13)0.0392 (15)0.0430 (14)0.0014 (11)0.0070 (12)0.0011 (12)
O30.0635 (14)0.0341 (11)0.0769 (15)0.0017 (10)0.0164 (12)0.0014 (11)
C100.060 (2)0.061 (2)0.075 (2)0.0151 (17)0.0198 (18)0.0072 (18)
C40.0387 (14)0.0532 (17)0.0517 (17)0.0047 (13)0.0135 (13)0.0030 (14)
C60.0530 (17)0.081 (2)0.0361 (15)0.0153 (17)0.0021 (13)0.0038 (16)
N10.0378 (11)0.0448 (14)0.0520 (14)0.0067 (10)0.0094 (11)0.0022 (11)
O10.0472 (11)0.0391 (11)0.0675 (14)0.0010 (9)0.0162 (10)0.0016 (10)
O20.0493 (12)0.0642 (16)0.0749 (16)0.0133 (11)0.0174 (12)0.0165 (13)
C130.0463 (16)0.0454 (17)0.0604 (18)0.0012 (14)0.0176 (15)0.0068 (15)
C140.0518 (19)0.094 (3)0.095 (3)0.012 (2)0.030 (2)0.002 (2)
O40.0544 (14)0.0595 (16)0.142 (3)0.0144 (12)0.0256 (17)0.0311 (18)
O50.0482 (12)0.0809 (17)0.0622 (14)0.0056 (11)0.0182 (11)0.0075 (12)
Br10.0557 (2)0.0767 (3)0.0680 (2)0.02186 (17)0.02031 (16)0.00019 (19)
C30.0383 (14)0.0518 (17)0.0452 (15)0.0021 (12)0.0007 (12)0.0004 (14)
C70.0352 (12)0.0441 (15)0.0345 (13)0.0012 (11)0.0026 (10)0.0000 (12)
C90.0434 (14)0.0454 (16)0.0414 (14)0.0032 (12)0.0102 (12)0.0049 (13)
C10.0352 (13)0.0477 (16)0.0361 (13)0.0005 (12)0.0046 (11)0.0011 (12)
Geometric parameters (Å, º) top
C2—C31.385 (4)C10—H10A0.96
C2—C11.386 (4)C4—C31.379 (4)
C2—H20.93C4—Br11.908 (3)
C8—C111.503 (4)C6—C11.382 (4)
C8—C91.542 (4)C6—H60.93
C8—C71.547 (3)N1—O11.468 (3)
C8—H80.98N1—C71.478 (4)
C5—C41.367 (5)O1—C91.419 (3)
C5—C61.390 (5)C13—O41.181 (4)
C5—H50.93C13—O51.326 (4)
C12—O31.444 (4)C13—C91.512 (4)
C12—H12C0.96C14—O51.444 (4)
C12—H12B0.96C14—H14C0.96
C12—H12A0.96C14—H14B0.96
C11—O21.202 (4)C14—H14A0.96
C11—O31.312 (4)C3—H30.93
C10—N11.462 (4)C7—C11.505 (4)
C10—H10C0.96C7—H70.98
C10—H10B0.96C9—H90.98
C3—C2—C1121.2 (3)C5—C6—H6119.5
C3—C2—H2119.4C10—N1—O1104.5 (2)
C1—C2—H2119.4C10—N1—C7113.2 (2)
C11—C8—C9117.3 (2)O1—N1—C7100.31 (19)
C11—C8—C7108.7 (2)C9—O1—N1102.4 (2)
C9—C8—C7101.9 (2)O4—C13—O5125.3 (3)
C11—C8—H8109.5O4—C13—C9126.9 (3)
C9—C8—H8109.5O5—C13—C9107.7 (3)
C7—C8—H8109.5O5—C14—H14C109.5
C4—C5—C6119.0 (3)O5—C14—H14B109.5
C4—C5—H5120.5H14C—C14—H14B109.5
C6—C5—H5120.5O5—C14—H14A109.5
O3—C12—H12C109.5H14C—C14—H14A109.5
O3—C12—H12B109.5H14B—C14—H14A109.5
H12C—C12—H12B109.5C13—O5—C14116.2 (3)
O3—C12—H12A109.5C4—C3—C2118.7 (3)
H12C—C12—H12A109.5C4—C3—H3120.6
H12B—C12—H12A109.5C2—C3—H3120.6
O2—C11—O3124.4 (3)N1—C7—C1113.1 (2)
O2—C11—C8125.7 (3)N1—C7—C8100.8 (2)
O3—C11—C8109.8 (2)C1—C7—C8114.6 (2)
C11—O3—C12117.1 (3)N1—C7—H7109.3
N1—C10—H10C109.5C1—C7—H7109.3
N1—C10—H10B109.5C8—C7—H7109.3
H10C—C10—H10B109.5O1—C9—C13109.1 (2)
N1—C10—H10A109.5O1—C9—C8106.0 (2)
H10C—C10—H10A109.5C13—C9—C8116.8 (2)
H10B—C10—H10A109.5O1—C9—H9108.2
C5—C4—C3121.5 (3)C13—C9—H9108.2
C5—C4—Br1120.0 (2)C8—C9—H9108.2
C3—C4—Br1118.5 (2)C6—C1—C2118.5 (3)
C1—C6—C5121.1 (3)C6—C1—C7119.6 (3)
C1—C6—H6119.5C2—C1—C7121.8 (2)
C9—C8—C11—O225.5 (4)C9—C8—C7—N126.7 (2)
C7—C8—C11—O289.3 (3)C11—C8—C7—C187.0 (3)
C9—C8—C11—O3159.4 (2)C9—C8—C7—C1148.5 (2)
C7—C8—C11—O385.8 (3)N1—O1—C9—C13161.6 (2)
O2—C11—O3—C122.7 (5)N1—O1—C9—C835.1 (3)
C8—C11—O3—C12172.4 (3)O4—C13—C9—O13.5 (5)
C6—C5—C4—C30.8 (5)O5—C13—C9—O1174.0 (2)
C6—C5—C4—Br1179.4 (3)O4—C13—C9—C8116.5 (4)
C4—C5—C6—C10.8 (6)O5—C13—C9—C865.9 (3)
C10—N1—O1—C9170.5 (2)C11—C8—C9—O1113.7 (3)
C7—N1—O1—C953.0 (2)C7—C8—C9—O14.9 (3)
O4—C13—O5—C147.2 (5)C11—C8—C9—C138.0 (4)
C9—C13—O5—C14175.2 (3)C7—C8—C9—C13126.6 (3)
C5—C4—C3—C20.0 (5)C5—C6—C1—C20.2 (5)
Br1—C4—C3—C2178.6 (2)C5—C6—C1—C7176.0 (3)
C1—C2—C3—C40.7 (5)C3—C2—C1—C60.6 (5)
C10—N1—C7—C177.9 (3)C3—C2—C1—C7176.7 (3)
O1—N1—C7—C1171.2 (2)N1—C7—C1—C6133.1 (3)
C10—N1—C7—C8159.2 (2)C8—C7—C1—C6112.1 (3)
O1—N1—C7—C848.3 (2)N1—C7—C1—C250.9 (4)
C11—C8—C7—N1151.2 (2)C8—C7—C1—C263.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.563.492 (4)179
C12—H12C···O1ii0.962.523.434 (5)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16BrNO5
Mr358.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.9020 (4), 8.1780 (3), 17.8127 (8)
β (°) 101.622 (3)
V3)1555.56 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.67
Crystal size (mm)0.71 × 0.60 × 0.45
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.327, 0.480
No. of measured, independent and
observed [I > 2σ(I)] reflections
15678, 3232, 2696
Rint0.043
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.101, 1.12
No. of reflections3232
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.93

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.563.492 (4)179
C12—H12C···O1ii0.962.523.434 (5)158
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBaldwin, S. W. & Aube, J. (1987). Tetrahedron Lett. 28, 179–182.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChiacchio, U., Corsaro, A., Iannazzo, D., Piperno, A., Pistara, V., Rescifina, A., Romeo, R., Sindona, G. & Romeo, G. (2003). Tetrahedron Asymmetry, 14, 2717–2723.  Web of Science CrossRef CAS Google Scholar
First citationConfalone, P. N. & Huie, E. M. (1988). Org. React. 36, 1–173.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFrederickson, M. (1997). Tetrahedron, 53, 403–425.  CrossRef CAS Web of Science Google Scholar
First citationGothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev. 98, 863–909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHeaney, F., Rooney, O., Cunningham, D. & McArdle, P. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 373–378.  CSD CrossRef Google Scholar
First citationOchiai, M., Obayashi, M. & Morita, K. (1967). Tetrahedron, 23, 2641–2648.  CrossRef CAS Web of Science Google Scholar
First citationPadwa, A., Koehler, K. F. & Rodringuez, A. (1981). J. Am. Chem. Soc. 103, 4974–4975.  CrossRef CAS Web of Science Google Scholar
First citationPadwa, A., Koehler, K. F. & Rodringuez, A. (1984). J. Org. Chem. 49, 282–288.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTorssell, K. B. G. (1988). Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis, edited by H. Feuer, pp. 75–93. New York: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds