organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Di­hydroxy­benzyl­­idene)acetohydrazide

aDepartment of Chemical Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China, and bResearch Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdhxc@126.com

(Received 2 August 2009; accepted 2 August 2009; online 8 August 2009)

In the title compound, C9H10N2O3, the Schiff base mol­ecule is approximately planar, the dihedral angle between the benzene ring and the acetohydrazide group (r.m.s. deviation = 0.034 Å) being 8.81 (7)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into a three-dimensional network by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For general background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145-153.]); Offe et al. (1952[Offe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446-447.]); Richardson et al. (1988[Richardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B. p. 81. New York: Alan R. Liss Inc.]). For related structures, see: Li et al. (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O3

  • Mr = 194.19

  • Monoclinic, P 21 /c

  • a = 10.598 (2) Å

  • b = 8.5017 (16) Å

  • c = 10.621 (2) Å

  • β = 107.232 (7)°

  • V = 913.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 223 K

  • 0.25 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.980

  • 5752 measured reflections

  • 2066 independent reflections

  • 1665 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.111

  • S = 0.94

  • 2066 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.17 2.9692 (15) 154
O2—H2A⋯O1ii 0.82 1.96 2.7206 (13) 154
O3—H3⋯O2 0.82 2.26 2.7109 (14) 115
O3—H3⋯O2iii 0.82 2.14 2.7784 (14) 134
C9—H9C⋯O3iv 0.96 2.51 3.445 (2) 166
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x+1, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have attracted much attention due to the possibility of their analytical applications (Cimerman et al., 1997). They are also important ligands, which have been reported to have mild bacteriostatic activity and as potential oral iron-chelating drugs for genetic disorders such as thalassemia (Offe et al., 1952; Richardson et al., 1988). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various complexes (Tamboura et al., 2009). We report here the crystal structure of the title compound (Fig. 1).

In the Schiff base molecule, the acetohydrazide group (O1/N1/N2/C8/C9) is planar (r.m.s. deviation 0.034 Å) and it forms a dihedral angle of 8.81 (7)° with the benzene (C1-C6) ring. The molecule adopts a trans configuration with respect to the CN bond. Bond lengths and angles are comparable to those observed for N'-[1-(4-methoxyphenyl)ethylidene]acetohydrazide (Li et al., 2008). An intramolecular O3—H3···O2 hydrogen bond is observed.

In the crystal, molecules are linked into a three-dimensional network (Fig.2) by O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For general background to Schiff bases, see: Cimerman et al. (1997); Offe et al. (1952); Richardson et al. (1988). For related structures, see: Li et al. (2008); Tamboura et al. (2009).

Experimental top

3,4-Dihydroxybenzaldehyde (1.38 g, 0.01 mol) and acetohydrazide (0.74 g, 0.01 mol) were dissolved in stirred methanol (20 ml) and left for 2.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 85% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 475–477 K).

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å, O-H = 0.82Å and C-H = 0.93 or 0.96Å) and refined using a riding model, with Uiso(H) =1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-(3,4-Dihydroxybenzylidene)acetohydrazide top
Crystal data top
C9H10N2O3F(000) = 408
Mr = 194.19Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2066 reflections
a = 10.598 (2) Åθ = 2.0–27.4°
b = 8.5017 (16) ŵ = 0.11 mm1
c = 10.621 (2) ÅT = 223 K
β = 107.232 (7)°Block, colourless
V = 913.9 (3) Å30.25 × 0.24 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2066 independent reflections
Radiation source: fine-focus sealed tube1665 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.972, Tmax = 0.980k = 1010
5752 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2108P]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.009
2066 reflectionsΔρmax = 0.21 e Å3
129 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (4)
Crystal data top
C9H10N2O3V = 913.9 (3) Å3
Mr = 194.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.598 (2) ŵ = 0.11 mm1
b = 8.5017 (16) ÅT = 223 K
c = 10.621 (2) Å0.25 × 0.24 × 0.20 mm
β = 107.232 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1665 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.980Rint = 0.023
5752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
2066 reflectionsΔρmin = 0.17 e Å3
129 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N21.00361 (10)0.13127 (13)0.68707 (10)0.0357 (3)
H20.98800.03520.70290.043*
O30.47733 (10)0.25734 (12)0.01091 (10)0.0522 (3)
H30.48480.34920.00930.078*
O20.64301 (9)0.48688 (11)0.14025 (10)0.0424 (3)
H2A0.69730.54730.18700.064*
O11.13124 (9)0.34588 (11)0.75557 (10)0.0445 (3)
N10.93041 (10)0.20010 (13)0.56882 (11)0.0362 (3)
C60.75370 (12)0.15246 (15)0.36828 (13)0.0345 (3)
C30.56800 (13)0.22557 (16)0.12889 (13)0.0374 (3)
C10.74814 (12)0.30536 (15)0.31694 (13)0.0338 (3)
H10.80630.38210.36280.041*
C20.65615 (12)0.34155 (15)0.19818 (12)0.0333 (3)
C50.66449 (13)0.03947 (16)0.29930 (14)0.0397 (3)
H50.66730.06170.33340.048*
C81.09751 (12)0.21065 (15)0.77666 (13)0.0336 (3)
C91.15560 (15)0.12587 (18)0.90450 (13)0.0440 (3)
H9A1.13780.01530.89190.066*
H9B1.11690.16530.96930.066*
H9C1.24940.14270.93420.066*
C70.84748 (13)0.10590 (15)0.49377 (13)0.0359 (3)
H70.84680.00180.52050.043*
C40.57178 (14)0.07602 (16)0.18054 (14)0.0412 (3)
H40.51220.00000.13570.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0383 (6)0.0271 (6)0.0362 (6)0.0028 (4)0.0024 (5)0.0041 (4)
O30.0513 (6)0.0409 (6)0.0465 (6)0.0082 (4)0.0132 (5)0.0037 (4)
O20.0409 (5)0.0333 (5)0.0426 (6)0.0053 (4)0.0036 (4)0.0054 (4)
O10.0454 (5)0.0301 (5)0.0501 (6)0.0069 (4)0.0019 (4)0.0001 (4)
N10.0360 (6)0.0332 (6)0.0354 (6)0.0007 (4)0.0045 (5)0.0048 (4)
C60.0347 (6)0.0349 (7)0.0326 (7)0.0013 (5)0.0081 (5)0.0000 (5)
C30.0341 (7)0.0385 (7)0.0347 (7)0.0021 (5)0.0024 (5)0.0019 (5)
C10.0322 (6)0.0320 (7)0.0345 (7)0.0046 (5)0.0060 (5)0.0027 (5)
C20.0326 (6)0.0304 (6)0.0350 (7)0.0018 (5)0.0070 (5)0.0001 (5)
C50.0436 (7)0.0323 (7)0.0402 (7)0.0048 (5)0.0079 (6)0.0020 (5)
C80.0332 (6)0.0288 (6)0.0376 (7)0.0014 (5)0.0086 (5)0.0027 (5)
C90.0470 (8)0.0416 (8)0.0376 (8)0.0004 (6)0.0038 (6)0.0022 (6)
C70.0384 (7)0.0315 (7)0.0363 (7)0.0022 (5)0.0087 (5)0.0024 (5)
C40.0406 (7)0.0355 (7)0.0416 (8)0.0097 (5)0.0031 (6)0.0047 (6)
Geometric parameters (Å, º) top
N2—C81.3380 (16)C3—C41.381 (2)
N2—N11.3944 (14)C3—C21.4069 (18)
N2—H20.86C1—C21.3811 (18)
O3—C31.3612 (16)C1—H10.93
O3—H30.82C5—C41.3851 (19)
O2—C21.3689 (16)C5—H50.93
O2—H2A0.82C8—C91.4989 (19)
O1—C81.2438 (16)C9—H9A0.96
N1—C71.2783 (17)C9—H9B0.96
C6—C51.3939 (18)C9—H9C0.96
C6—C11.4041 (18)C7—H70.93
C6—C71.4615 (18)C4—H40.93
C8—N2—N1121.80 (11)C4—C5—C6120.78 (13)
C8—N2—H2119.1C4—C5—H5119.6
N1—N2—H2119.1C6—C5—H5119.6
C3—O3—H3109.5O1—C8—N2122.07 (12)
C2—O2—H2A109.5O1—C8—C9123.01 (12)
C7—N1—N2113.26 (11)N2—C8—C9114.90 (12)
C5—C6—C1119.34 (12)C8—C9—H9A109.5
C5—C6—C7117.70 (12)C8—C9—H9B109.5
C1—C6—C7122.94 (12)H9A—C9—H9B109.5
O3—C3—C4118.55 (12)C8—C9—H9C109.5
O3—C3—C2121.38 (12)H9A—C9—H9C109.5
C4—C3—C2120.06 (12)H9B—C9—H9C109.5
C2—C1—C6119.86 (12)N1—C7—C6123.72 (12)
C2—C1—H1120.1N1—C7—H7118.1
C6—C1—H1120.1C6—C7—H7118.1
O2—C2—C1124.19 (11)C3—C4—C5119.85 (12)
O2—C2—C3115.73 (11)C3—C4—H4120.1
C1—C2—C3120.09 (12)C5—C4—H4120.1
C8—N2—N1—C7178.32 (12)C7—C6—C5—C4179.18 (13)
C5—C6—C1—C20.99 (19)N1—N2—C8—O15.29 (19)
C7—C6—C1—C2179.44 (12)N1—N2—C8—C9173.18 (11)
C6—C1—C2—O2179.96 (12)N2—N1—C7—C6176.10 (11)
C6—C1—C2—C30.13 (19)C5—C6—C7—N1176.99 (13)
O3—C3—C2—O20.93 (19)C1—C6—C7—N11.5 (2)
C4—C3—C2—O2178.75 (12)O3—C3—C4—C5178.87 (13)
O3—C3—C2—C1179.22 (12)C2—C3—C4—C51.4 (2)
C4—C3—C2—C11.1 (2)C6—C5—C4—C30.6 (2)
C1—C6—C5—C40.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.172.9692 (15)154
O2—H2A···O1ii0.821.962.7206 (13)154
O3—H3···O20.822.262.7109 (14)115
O3—H3···O2iii0.822.142.7784 (14)134
C9—H9C···O3iv0.962.513.445 (2)166
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O3
Mr194.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)10.598 (2), 8.5017 (16), 10.621 (2)
β (°) 107.232 (7)
V3)913.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.972, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5752, 2066, 1665
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.111, 0.94
No. of reflections2066
No. of parameters129
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.172.9692 (15)154
O2—H2A···O1ii0.821.962.7206 (13)154
O3—H3···O20.822.262.7109 (14)115
O3—H3···O2iii0.822.142.7784 (14)134
C9—H9C···O3iv0.962.513.445 (2)166
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank the Science and Technology Project of Zhejiang Province (grant No. 2007 F70077) for financial support.

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOffe, H. A., Siefen, W. & Domagk, G. (1952). Z. Naturforsch. Teil B, 7, 446–447.  Google Scholar
First citationRichardson, D., Baker, E., Ponka, P., Wilairat, P., Vitolo, M. L. & Webb, J. (1988). Thalassemia: Pathophysiology and Management, Part B. p. 81. New York: Alan R. Liss Inc.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds