metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-chloro-2-(imino­meth­yl)phenolato]copper(II) methanol disolvate

aDepartment of Pharmacy, Xi'An Medical University, Xi'an Shaanxi 721021, People's Republic of China
*Correspondence e-mail: pxh913@163.com

(Received 2 August 2009; accepted 5 August 2009; online 19 August 2009)

The title compound, [Cu(C7H5ClNO)2]·2CH3OH, possesses crystallographic twofold symmetry, with the twofold axis passing through the central CuII ion. The metal centre is coordinated by two O atoms and two N atoms from two symmetry-related Schiff base ligands, forming a slightly distorted cis-CuN2O2 square-planar geometry. The complex mol­ecules are linked via the solvent methanol mol­ecules by O—H⋯O and N—H⋯O hydrogen bonds, leading to the formation of chains along the b axis.

Related literature

For general background to Schiff base copper(II) complexes, see: Adsule et al. (2006[Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242-7246.]); Erxleben & Schumacher (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039-3046.]); Stewart et al. (1961[Stewart, J. M., Lingafelter, E. C. & Breazeale, J. D. (1961). Acta Cryst. 14, 888-891.]). For related structures, see: Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m958-m959.]); Wei et al. (2004[Wei, Y.-B., Yuan, C.-X. & Yang, P. (2004). Acta Cryst. C60, m512-m514.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H5ClNO)2]·2CH4O

  • Mr = 436.76

  • Monoclinic, C 2/c

  • a = 20.603 (2) Å

  • b = 7.639 (1) Å

  • c = 14.6681 (15) Å

  • β = 129.376 (2)°

  • V = 1784.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 298 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.801, Tmax = 0.886

  • 4502 measured reflections

  • 1568 independent reflections

  • 1167 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.05

  • 1568 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 2.04 2.822 (3) 160
N1—H1⋯O2i 0.86 2.20 2.986 (4) 153
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The syntheses of copper(II) complexes with Schiff base have been reported for their applications in the design and construction of new magnetic materials (Erxleben & Schumache, 2001; Stewart et al., 1961). Some of these complexes also inhibit the cellular proteasome activity (Adsule et al., 2006). As an extension of the work on structural characterization of mononuclear copper(II) complexes, the crystal structure of the title compound is reported.

Complex (I) is a mononuclear copper(II) compound. The central CuII atom is coordinated by two O atoms and two N atoms of the two Schiff base ligands to form a slightly distorted square-planar geometry, with angles subtended at the copper(II) atoms in the range 84.48 (12)°–172.02 (10)°. The Cu—O and Cu—N bond lengths are 1.915 (2) Å and 1.939 (2) Å, respectively, which are a little longer than the corresponding value of 1.842 (3) Å and 1.837 (3) Å observed in a similar Schiff base copper(II) complex (Li & Zhang, 2004).

Intermolecular O—H···O and N—H···O hydrogen bonds involving atoms O1 and N1 from the Schiff base and O2 from the methanol (Table 1) link the molecules to form chains along the b axis. From Fig. 2, it can be seen that benzene rings from neighbouring complexes are parallel but the distance between their centroids is 3.852 (2) Å, which is longer than the distance (3.4 Å) between neighbouring base pairs in DNA (Wei et al., 2004), indicating no π···π packing interactions.

Related literature top

For general background to Schiff base copper(II) complexes, see: Adsule et al. (2006); Erxleben & Schumache (2001); Stewart et al. (1961). For related structures, see: Li & Zhang (2004); Wei et al. (2004).

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. 5-Chloro-2-hydroxybenzaldehyde (0.2 mmol, 31.32 mg), isopropylamine (0.2 mmol, 11.8 mg) and Cu(Ac)2 (0.1 mmol 18.2 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature for 30 min and then filtered. The filtrate was allowed to stand in air for 7 d, after which time yellow block-shaped crystals of the title compound were formed by slow evaporation of the solvent.

Refinement top

H atoms attached to C and N atoms were placed in geometrically idealized positions (N-H = 0.86 Å and C-H = 0.93-0.96 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). H atoms attached to O atoms (water) were located in difference Fourier maps and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond; symmetry code: (A) 1 -x, y, 3/2 - z.
[Figure 2] Fig. 2. Part of the crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.
Bis[4-chloro-2-(iminomethyl)phenolato]copper(II) methanol disolvate top
Crystal data top
[Cu(C7H5ClNO)2]·2CH4OF(000) = 892
Mr = 436.76Dx = 1.626 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1362 reflections
a = 20.603 (2) Åθ = 2.6–27.5°
b = 7.639 (1) ŵ = 1.55 mm1
c = 14.6681 (15) ÅT = 298 K
β = 129.376 (2)°Block, yellow
V = 1784.5 (3) Å30.15 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1568 independent reflections
Radiation source: fine-focus sealed tube1167 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2420
Tmin = 0.801, Tmax = 0.886k = 97
4502 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0346P)2]
where P = (Fo2 + 2Fc2)/3
1568 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Cu(C7H5ClNO)2]·2CH4OV = 1784.5 (3) Å3
Mr = 436.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.603 (2) ŵ = 1.55 mm1
b = 7.639 (1) ÅT = 298 K
c = 14.6681 (15) Å0.15 × 0.11 × 0.08 mm
β = 129.376 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1568 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1167 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.886Rint = 0.048
4502 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
1568 reflectionsΔρmin = 0.27 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.17304 (7)0.75000.0365 (2)
Cl10.11369 (5)0.33974 (13)0.15757 (7)0.0592 (3)
N10.41857 (15)0.0028 (3)0.6418 (2)0.0413 (7)
H10.42970.10880.66740.050*
O10.43140 (12)0.3587 (2)0.64243 (18)0.0417 (6)
O20.41114 (18)0.6573 (3)0.7355 (2)0.0727 (8)
H20.42840.56930.72490.109*
C10.3505 (2)0.0205 (4)0.5374 (3)0.0407 (8)
H1A0.31770.07760.49640.049*
C20.32026 (18)0.1865 (4)0.4774 (3)0.0342 (7)
C30.36158 (18)0.3465 (4)0.5328 (3)0.0343 (7)
C40.32418 (18)0.5002 (4)0.4667 (3)0.0414 (8)
H40.35040.60690.50100.050*
C50.25007 (19)0.4981 (5)0.3530 (3)0.0439 (8)
H50.22690.60200.31100.053*
C60.21020 (18)0.3407 (4)0.3012 (3)0.0408 (8)
C70.24355 (19)0.1877 (4)0.3604 (3)0.0411 (8)
H70.21590.08290.32400.049*
C200.4423 (2)0.6610 (5)0.8525 (3)0.0618 (10)
H20A0.50250.65440.90480.093*
H20B0.42040.56320.86650.093*
H20C0.42540.76800.86660.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0396 (3)0.0265 (3)0.0406 (3)0.0000.0241 (3)0.000
Cl10.0508 (5)0.0672 (7)0.0368 (5)0.0024 (5)0.0170 (4)0.0017 (4)
N10.0480 (16)0.0252 (14)0.0447 (16)0.0017 (13)0.0266 (14)0.0018 (12)
O10.0385 (12)0.0252 (12)0.0398 (13)0.0011 (9)0.0147 (11)0.0018 (9)
O20.118 (2)0.0396 (15)0.0717 (19)0.0145 (15)0.0654 (18)0.0053 (13)
C10.0474 (19)0.0295 (17)0.049 (2)0.0093 (15)0.0324 (18)0.0109 (15)
C20.0352 (16)0.0332 (17)0.0381 (17)0.0000 (15)0.0251 (15)0.0016 (14)
C30.0362 (17)0.0296 (18)0.0398 (18)0.0007 (14)0.0253 (16)0.0008 (14)
C40.0429 (18)0.0338 (18)0.0427 (19)0.0015 (15)0.0248 (16)0.0013 (15)
C50.050 (2)0.0404 (19)0.045 (2)0.0080 (17)0.0314 (17)0.0103 (16)
C60.0379 (18)0.050 (2)0.0327 (17)0.0020 (16)0.0214 (15)0.0004 (15)
C70.0457 (19)0.0416 (19)0.0409 (19)0.0048 (17)0.0299 (17)0.0087 (16)
C200.068 (3)0.054 (2)0.062 (3)0.002 (2)0.040 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O1i1.9152 (19)C2—C31.414 (4)
Cu1—O11.9152 (19)C2—C71.415 (4)
Cu1—N11.939 (2)C3—C41.402 (4)
Cu1—N1i1.939 (2)C4—C51.372 (4)
Cl1—C61.754 (3)C4—H40.93
N1—C11.272 (4)C5—C61.380 (4)
N1—H10.86C5—H50.93
O1—C31.315 (3)C6—C71.355 (4)
O2—C201.400 (4)C7—H70.93
O2—H20.82C20—H20A0.96
C1—C21.440 (4)C20—H20B0.96
C1—H1A0.93C20—H20C0.96
O1i—Cu1—O184.48 (12)C4—C3—C2117.4 (3)
O1i—Cu1—N1172.02 (10)C5—C4—C3122.0 (3)
O1—Cu1—N192.03 (9)C5—C4—H4119.0
O1i—Cu1—N1i92.03 (9)C3—C4—H4119.0
O1—Cu1—N1i172.02 (10)C4—C5—C6119.6 (3)
N1—Cu1—N1i92.31 (15)C4—C5—H5120.2
C1—N1—Cu1127.5 (2)C6—C5—H5120.2
C1—N1—H1116.2C7—C6—C5121.1 (3)
Cu1—N1—H1116.2C7—C6—Cl1119.6 (3)
C3—O1—Cu1128.18 (18)C5—C6—Cl1119.3 (2)
C20—O2—H2109.5C6—C7—C2120.3 (3)
N1—C1—C2125.3 (3)C6—C7—H7119.8
N1—C1—H1A117.3C2—C7—H7119.8
C2—C1—H1A117.3O2—C20—H20A109.5
C3—C2—C7119.6 (3)O2—C20—H20B109.5
C3—C2—C1122.7 (3)H20A—C20—H20B109.5
C7—C2—C1117.6 (3)O2—C20—H20C109.5
O1—C3—C4118.8 (3)H20A—C20—H20C109.5
O1—C3—C2123.8 (3)H20B—C20—H20C109.5
O1—Cu1—N1—C14.2 (3)C7—C2—C3—C41.0 (4)
N1i—Cu1—N1—C1169.1 (3)C1—C2—C3—C4177.5 (3)
O1i—Cu1—O1—C3179.9 (3)O1—C3—C4—C5178.1 (3)
N1—Cu1—O1—C37.3 (3)C2—C3—C4—C50.5 (5)
Cu1—N1—C1—C20.4 (5)C3—C4—C5—C60.4 (5)
N1—C1—C2—C34.3 (5)C4—C5—C6—C70.8 (5)
N1—C1—C2—C7179.2 (3)C4—C5—C6—Cl1177.9 (2)
Cu1—O1—C3—C4175.7 (2)C5—C6—C7—C20.3 (5)
Cu1—O1—C3—C25.8 (4)Cl1—C6—C7—C2178.4 (2)
C7—C2—C3—O1177.5 (3)C3—C2—C7—C60.7 (5)
C1—C2—C3—O11.1 (5)C1—C2—C7—C6177.3 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.042.822 (3)160
N1—H1···O2ii0.862.202.986 (4)153
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H5ClNO)2]·2CH4O
Mr436.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)20.603 (2), 7.639 (1), 14.6681 (15)
β (°) 129.376 (2)
V3)1784.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.801, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
4502, 1568, 1167
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.084, 1.05
No. of reflections1568
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.822.042.822 (3)160
N1—H1···O2i0.862.202.986 (4)153
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The author thanks Xi'An Medical University for financial support.

References

First citationAdsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. & Sarkar, F. H. (2006). J. Med. Chem. 49, 7242–7246.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. 12, 3039–3046.  CrossRef Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m958–m959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. M., Lingafelter, E. C. & Breazeale, J. D. (1961). Acta Cryst. 14, 888–891.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWei, Y.-B., Yuan, C.-X. & Yang, P. (2004). Acta Cryst. C60, m512–m514.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds