organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­hydro-1,3-thia­zol-2-yl­­idene)-4-[(2-hy­droxy­benzyl­­idene)amino]benzene­sulfonamide

aDepartment of Chemistry, Baoji University of Arts and Sciences, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: zhangxinli6008@163.com

(Received 7 August 2009; accepted 24 August 2009; online 29 August 2009)

The title compound, C16H13N3O3S2, was prepared by reaction of salicylaldehyde and sulfathia­zole in methanol. The dihedral angle between the central benzene ring and the thia­zole ring is 85.2 (2)° and that between the two benzene rings is 17.9 (2)°. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are held together by inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological activity of Schiff bases, see: Billson et al. (2000[Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718-720.]); Carlton et al. (1995[Carlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341-347.]). For a related structure, see: Li et al. (2006[Li, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513-o4514.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13N3O3S2

  • Mr = 359.41

  • Monoclinic, P 21 /c

  • a = 16.1693 (18) Å

  • b = 9.1211 (11) Å

  • c = 11.0292 (13) Å

  • β = 101.896 (1)°

  • V = 1591.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.40 × 0.37 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.932

  • 7737 measured reflections

  • 2806 independent reflections

  • 1927 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.04

  • 2806 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.97 (4) 1.73 (4) 2.636 (4) 154 (4)
N2—H2A⋯N3i 0.89 (3) 1.97 (3) 2.856 (3) 179 (3)
C6—H6⋯O1ii 0.93 2.58 3.334 (4) 139
C16—H16⋯O2iii 0.93 2.52 3.351 (4) 148
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and characterization of Schiff base compounds have received a great deal of attention due to their biological activities, such as anti-bacterial, anti-cancer and anti-virus (Billson et al., 2000; Carlton et al., 1995). In this paper, we report the crystal structure of the title compound, a new Schiff-base ligand, (I).

Bbond lengths and angles in (I) are normal and they agree with those observed in a salicylaldehyde Schiff base (Li et al., 2006). The C7db// N1 bond length of 1.269 (4) Å conforms to the value for a double bond. The dihedral angle between C1-C6 benzene ring and thiazole ring is 85.2 (2)°. The dihedral angle between the two benzene rings is 17.9 (2)°. An intramolecular O3—H3A···N1 hydrogen bond generates an S(6) ring motif (Fig. 1).

The molecules are held together by N—H···N and C—H···O intermolecular hydrogen bonds (Table 1), forming a two-dimensional network parallel to the bc plane (Fig. 2).

Related literature top

For the biological activity of Schiff bases, see: Billson et al. (2000); Carlton et al. (1995). For a related structure, see: Li et al. (2006).

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China, and were used without further purification. A methanol solution (10 ml) of salicylaldehyde (0.1 mmol, 12.2 mg) and sulfathiazloe (0.1 mmol, 25.5 mg) was stirred at room temperature for 30 min and then filtered. The filtrate was left to stand in air for 7 d, and the title compound was formed in slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 64%).

Refinement top

Atoms H2A and H3A were located in a difference map and refined freely. The remaining H atoms were positioned geometrically [C-H = 0.93 Å] and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.
N-(2,3-Dihydro-1,3-thiazol-2-ylidene)-4-[(2- hydroxybenzylidene)amino]benzenesulfonamide top
Crystal data top
C16H13N3O3S2F(000) = 744
Mr = 359.41Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2137 reflections
a = 16.1693 (18) Åθ = 2.6–25.0°
b = 9.1211 (11) ŵ = 0.36 mm1
c = 11.0292 (13) ÅT = 298 K
β = 101.896 (1)°Block, yellow
V = 1591.7 (3) Å30.40 × 0.37 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2806 independent reflections
Radiation source: fine-focus sealed tube1927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.871, Tmax = 0.932k = 1010
7737 measured reflectionsl = 813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.04P)2 + 1.0601P]
where P = (Fo2 + 2Fc2)/3
2806 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H13N3O3S2V = 1591.7 (3) Å3
Mr = 359.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1693 (18) ŵ = 0.36 mm1
b = 9.1211 (11) ÅT = 298 K
c = 11.0292 (13) Å0.40 × 0.37 × 0.20 mm
β = 101.896 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1927 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.932Rint = 0.031
7737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
2806 reflectionsΔρmin = 0.30 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.54316 (16)0.2823 (3)0.3783 (2)0.0517 (7)
N20.95632 (15)0.6826 (3)0.4499 (2)0.0375 (6)
H2A0.9910 (19)0.640 (3)0.513 (3)0.055 (10)*
N30.93153 (14)0.4585 (2)0.3503 (2)0.0370 (6)
O10.86589 (13)0.4333 (2)0.12312 (17)0.0484 (5)
O20.91746 (13)0.2184 (2)0.2533 (2)0.0506 (6)
O30.45423 (16)0.1377 (3)0.5144 (2)0.0728 (8)
H3A0.498 (3)0.166 (5)0.470 (4)0.109*
S10.87791 (4)0.35993 (8)0.24101 (7)0.0379 (2)
S20.86729 (5)0.71804 (9)0.23688 (7)0.0475 (2)
C10.77728 (17)0.3381 (3)0.2773 (3)0.0363 (7)
C20.70885 (18)0.4196 (3)0.2163 (3)0.0441 (8)
H20.71570.48620.15530.053*
C30.63071 (18)0.4019 (4)0.2458 (3)0.0494 (8)
H3B0.58490.45590.20360.059*
C40.61981 (19)0.3047 (4)0.3375 (3)0.0458 (8)
C50.68850 (19)0.2214 (3)0.3959 (3)0.0482 (8)
H50.68140.15260.45510.058*
C60.76694 (19)0.2390 (3)0.3675 (3)0.0438 (7)
H60.81270.18450.40900.053*
C70.4851 (2)0.3782 (4)0.3608 (3)0.0555 (9)
H70.49190.46130.31510.067*
C80.40865 (19)0.3643 (4)0.4087 (3)0.0496 (8)
C90.39700 (19)0.2481 (4)0.4865 (3)0.0527 (8)
C100.3252 (2)0.2432 (4)0.5367 (3)0.0633 (10)
H100.31740.16660.58890.076*
C110.2658 (2)0.3519 (5)0.5089 (3)0.0662 (11)
H110.21800.34850.54350.079*
C120.2749 (2)0.4648 (5)0.4319 (4)0.0655 (10)
H120.23330.53640.41250.079*
C130.3464 (2)0.4713 (4)0.3833 (3)0.0625 (10)
H130.35340.54930.33200.075*
C140.92217 (16)0.6028 (3)0.3501 (2)0.0336 (6)
C150.9408 (2)0.8303 (3)0.4400 (3)0.0477 (8)
H150.96140.89690.50290.057*
C160.8939 (2)0.8685 (4)0.3323 (3)0.0554 (9)
H160.87720.96410.31040.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0409 (15)0.0615 (19)0.0528 (17)0.0026 (14)0.0101 (13)0.0003 (14)
N20.0399 (14)0.0344 (14)0.0362 (14)0.0024 (11)0.0033 (12)0.0005 (12)
N30.0402 (13)0.0306 (14)0.0378 (13)0.0001 (11)0.0027 (11)0.0001 (11)
O10.0591 (13)0.0538 (14)0.0323 (11)0.0072 (11)0.0092 (9)0.0014 (10)
O20.0532 (13)0.0349 (12)0.0674 (15)0.0032 (10)0.0213 (11)0.0078 (11)
O30.0607 (16)0.0759 (19)0.0865 (19)0.0096 (14)0.0256 (14)0.0188 (15)
S10.0420 (4)0.0339 (4)0.0378 (4)0.0013 (3)0.0086 (3)0.0048 (3)
S20.0595 (5)0.0377 (5)0.0424 (5)0.0064 (4)0.0033 (4)0.0063 (4)
C10.0392 (16)0.0360 (16)0.0320 (15)0.0005 (13)0.0032 (12)0.0047 (13)
C20.0451 (18)0.0501 (19)0.0344 (16)0.0025 (15)0.0018 (14)0.0069 (15)
C30.0388 (17)0.062 (2)0.0437 (19)0.0040 (15)0.0005 (14)0.0058 (16)
C40.0422 (18)0.052 (2)0.0427 (18)0.0049 (15)0.0083 (14)0.0030 (15)
C50.0508 (19)0.048 (2)0.0475 (19)0.0005 (16)0.0134 (15)0.0095 (15)
C60.0452 (18)0.0428 (18)0.0427 (18)0.0046 (14)0.0073 (14)0.0029 (14)
C70.054 (2)0.057 (2)0.057 (2)0.0035 (18)0.0133 (17)0.0027 (17)
C80.0437 (18)0.056 (2)0.0481 (19)0.0037 (16)0.0083 (15)0.0077 (17)
C90.0405 (18)0.062 (2)0.053 (2)0.0013 (17)0.0044 (16)0.0071 (18)
C100.054 (2)0.078 (3)0.060 (2)0.011 (2)0.0173 (18)0.007 (2)
C110.045 (2)0.092 (3)0.064 (2)0.004 (2)0.0176 (18)0.025 (2)
C120.052 (2)0.072 (3)0.070 (3)0.0065 (19)0.0075 (19)0.019 (2)
C130.058 (2)0.062 (2)0.066 (2)0.0037 (19)0.0111 (19)0.0043 (19)
C140.0300 (14)0.0360 (17)0.0356 (16)0.0015 (12)0.0087 (12)0.0014 (13)
C150.056 (2)0.0333 (18)0.054 (2)0.0060 (15)0.0122 (16)0.0056 (15)
C160.068 (2)0.0320 (18)0.066 (2)0.0033 (16)0.0122 (19)0.0023 (16)
Geometric parameters (Å, º) top
N1—C71.269 (4)C4—C51.389 (4)
N1—C41.418 (4)C5—C61.377 (4)
N2—C141.340 (3)C5—H50.93
N2—C151.371 (4)C6—H60.93
N2—H2A0.89 (3)C7—C81.446 (4)
N3—C141.325 (3)C7—H70.93
N3—S11.607 (2)C8—C131.388 (4)
O1—S11.440 (2)C8—C91.401 (5)
O2—S11.434 (2)C9—C101.386 (5)
O3—C91.359 (4)C10—C111.371 (5)
O3—H3A0.97 (4)C10—H100.93
S1—C11.765 (3)C11—C121.362 (5)
S2—C161.728 (3)C11—H110.93
S2—C141.730 (3)C12—C131.373 (5)
C1—C61.379 (4)C12—H120.93
C1—C21.387 (4)C13—H130.93
C2—C31.377 (4)C15—C161.318 (4)
C2—H20.93C15—H150.93
C3—C41.384 (4)C16—H160.93
C3—H3B0.93
C7—N1—C4121.4 (3)N1—C7—C8123.1 (3)
C14—N2—C15115.6 (3)N1—C7—H7118.5
C14—N2—H2A119 (2)C8—C7—H7118.5
C15—N2—H2A125 (2)C13—C8—C9118.2 (3)
C14—N3—S1120.72 (19)C13—C8—C7120.2 (3)
C9—O3—H3A103 (3)C9—C8—C7121.5 (3)
O2—S1—O1118.59 (13)O3—C9—C10118.2 (3)
O2—S1—N3105.74 (12)O3—C9—C8121.9 (3)
O1—S1—N3111.64 (12)C10—C9—C8119.9 (3)
O2—S1—C1106.91 (13)C11—C10—C9119.6 (4)
O1—S1—C1107.36 (13)C11—C10—H10120.2
N3—S1—C1105.84 (12)C9—C10—H10120.2
C16—S2—C1490.97 (15)C12—C11—C10121.7 (4)
C6—C1—C2119.9 (3)C12—C11—H11119.2
C6—C1—S1119.5 (2)C10—C11—H11119.2
C2—C1—S1120.7 (2)C11—C12—C13118.9 (4)
C3—C2—C1120.1 (3)C11—C12—H12120.5
C3—C2—H2119.9C13—C12—H12120.5
C1—C2—H2119.9C12—C13—C8121.7 (4)
C2—C3—C4120.6 (3)C12—C13—H13119.2
C2—C3—H3B119.7C8—C13—H13119.2
C4—C3—H3B119.7N3—C14—N2120.7 (3)
C3—C4—C5118.6 (3)N3—C14—S2130.3 (2)
C3—C4—N1125.2 (3)N2—C14—S2109.0 (2)
C5—C4—N1116.2 (3)C16—C15—N2113.1 (3)
C6—C5—C4121.1 (3)C16—C15—H15123.4
C6—C5—H5119.4N2—C15—H15123.4
C4—C5—H5119.4C15—C16—S2111.3 (2)
C5—C6—C1119.6 (3)C15—C16—H16124.3
C5—C6—H6120.2S2—C16—H16124.3
C1—C6—H6120.2
C14—N3—S1—O2166.3 (2)N1—C7—C8—C13178.2 (3)
C14—N3—S1—O136.0 (3)N1—C7—C8—C95.1 (5)
C14—N3—S1—C180.5 (2)C13—C8—C9—O3178.9 (3)
O2—S1—C1—C634.9 (3)C7—C8—C9—O34.3 (5)
O1—S1—C1—C6163.2 (2)C13—C8—C9—C100.7 (5)
N3—S1—C1—C677.5 (3)C7—C8—C9—C10176.1 (3)
O2—S1—C1—C2145.2 (2)O3—C9—C10—C11179.1 (3)
O1—S1—C1—C216.9 (3)C8—C9—C10—C110.5 (5)
N3—S1—C1—C2102.4 (2)C9—C10—C11—C120.6 (5)
C6—C1—C2—C30.1 (4)C10—C11—C12—C131.5 (5)
S1—C1—C2—C3179.8 (2)C11—C12—C13—C81.3 (5)
C1—C2—C3—C40.9 (5)C9—C8—C13—C120.2 (5)
C2—C3—C4—C52.4 (5)C7—C8—C13—C12177.0 (3)
C2—C3—C4—N1177.4 (3)S1—N3—C14—N2169.4 (2)
C7—N1—C4—C321.1 (5)S1—N3—C14—S28.7 (4)
C7—N1—C4—C5158.7 (3)C15—N2—C14—N3178.5 (3)
C3—C4—C5—C62.8 (5)C15—N2—C14—S20.0 (3)
N1—C4—C5—C6177.0 (3)C16—S2—C14—N3178.1 (3)
C4—C5—C6—C11.8 (5)C16—S2—C14—N20.1 (2)
C2—C1—C6—C50.3 (4)C14—N2—C15—C160.3 (4)
S1—C1—C6—C5179.8 (2)N2—C15—C16—S20.4 (4)
C4—N1—C7—C8175.4 (3)C14—S2—C16—C150.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.97 (4)1.73 (4)2.636 (4)154 (4)
N2—H2A···N3i0.89 (3)1.97 (3)2.856 (3)179 (3)
C6—H6···O1ii0.932.583.334 (4)139
C16—H16···O2iii0.932.523.351 (4)148
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13N3O3S2
Mr359.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.1693 (18), 9.1211 (11), 11.0292 (13)
β (°) 101.896 (1)
V3)1591.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.37 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.871, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
7737, 2806, 1927
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.04
No. of reflections2806
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.97 (4)1.73 (4)2.636 (4)154 (4)
N2—H2A···N3i0.89 (3)1.97 (3)2.856 (3)179 (3)
C6—H6···O1ii0.932.583.334 (4)139
C16—H16···O2iii0.932.523.351 (4)148
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The work was supported financially by research grant No. 09JS068 from the Phytochemistry Key Laboratory of Shaanxi Province.

References

First citationBillson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlton, L. D., Schmith, V. D. & Brouwer, K. L. R. (1995). Prostaglandins, 50, 341–347.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLi, Z.-X., Zhang, X.-L. & Wang, X.-L. (2006). Acta Cryst. E62, o4513–o4514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds