organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hydr­­oxy-3-meth­oxy­benzyl­­idene)-4-hydr­­oxy-3-meth­oxy­benzohydrazide dihydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China, and bThe School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 15 August 2009; accepted 22 August 2009; online 29 August 2009)

In the title compound, C16H15BrN2O5·2H2O, the dihedral angle between the two aromatic rings is 2.9 (2)° and an intra­molecular O—H⋯N hydrogen bond is observed. One of the water mol­ecule is disordered over two positions, with occupancies of 0.83 (3) and 0.17 (3). In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular O—H⋯O, O—H⋯(O,O), O—H⋯N and N—H⋯O hydrogen bonds. ππ inter­actions involving Br-substituted benzene rings, with a centroid–centroid distance of 3.552 (3) Å are also observed.

Related literature

For related structures, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.],c[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.]); Abdul Alhadi et al. (2009[Abdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Narayana et al. (2007[Narayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrN2O5·2H2O

  • Mr = 431.24

  • Monoclinic, P 21 /c

  • a = 9.262 (2) Å

  • b = 8.679 (2) Å

  • c = 24.289 (5) Å

  • β = 112.42 (3)°

  • V = 1804.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.618, Tmax = 0.654

  • 14447 measured reflections

  • 3897 independent reflections

  • 1997 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.135

  • S = 1.02

  • 3897 reflections

  • 261 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O1 0.85 (5) 2.34 (5) 2.875 (4) 122 (4)
O7—H7B⋯O2 0.85 (5) 2.22 (5) 3.027 (5) 159 (5)
O7—H7A⋯O6A 0.85 (5) 2.06 (2) 2.884 (10) 163 (6)
O6A—H6B⋯O7i 0.85 (1) 1.91 (4) 2.740 (8) 163 (5)
O6A—H6A⋯O3 0.85 (1) 1.92 (2) 2.715 (6) 154 (4)
N2—H2⋯O5ii 0.90 2.14 3.028 (4) 169
O5—H5⋯O6Biii 0.82 1.85 2.64 (3) 163
O5—H5⋯O6Aiii 0.82 1.81 2.618 (5) 166
O1—H1⋯N1 0.82 1.83 2.550 (4) 145
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes have received much attention in recent years. As part of our investigation on the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b,c), we report herein the crystal structure of the title new Schiff base compound.

The title compound (Fig. 1) consists of a Schiff base molecule and two water molecules of crystallization. The bond lengths have normal values (Allen et al., 1987) and are comparable to those observed in related structures (Abdul Alhadi et al., 2009; Mohd Lair et al., 2009; Narayana et al., 2007). The dihedral angle between the two aromatic rings is 2.9 (2)°, indicating that they are approximately coplanar. An intramolecular O—H···N hydrogen bond is observed (Fig. 1).

In the crystal structure, the molecules are linked into layers parallel to the ab direction by intermolecular N—H···O and O—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related structures, see: Lu et al. (2008a,b,c); Abdul Alhadi et al. (2009); Mohd Lair et al. (2009); Narayana et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 5-bromo-2-hydroxy-3-methoxybenzaldehyde (0.1 mol) and 4-hydroxy-3-methoxybenzohydrazide (0.1 mmol) in 95% ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of a 95% ethanol solution at room temperature.

Refinement top

One of the water oxygen (O6) is disordered over two positions (O6A and O6B) with occupancies of 0.83 (3) and 0.17 (3). The Uij parameters of atoms O6B and O7 were restrained to an approximate isotropic behaviour. The H atoms of the water molecules were located in a difference map and refined with O-H and H···H distance restraints of 0.85 (1) and 1.37 (2) Å, respectively. The disordered water O atoms O6A and O6B share the same H atoms. All other H atoms were positioned geometrically (O-H = 0.82 Å and N-H = 0.90 Å and C-H = 0.93 or 0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines. Only the major component of a disordered water molecule is shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)-4-hydroxy-3-methoxybenzohydrazide dihydrate top
Crystal data top
C16H15BrN2O5·2H2OF(000) = 880
Mr = 431.24Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1489 reflections
a = 9.262 (2) Åθ = 2.4–24.5°
b = 8.679 (2) ŵ = 2.32 mm1
c = 24.289 (5) ÅT = 298 K
β = 112.42 (3)°Block, colourless
V = 1804.9 (8) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3897 independent reflections
Radiation source: fine-focus sealed tube1997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.618, Tmax = 0.654k = 1111
14447 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + 0.9035P]
where P = (Fo2 + 2Fc2)/3
3897 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.32 e Å3
20 restraintsΔρmin = 0.53 e Å3
Crystal data top
C16H15BrN2O5·2H2OV = 1804.9 (8) Å3
Mr = 431.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.262 (2) ŵ = 2.32 mm1
b = 8.679 (2) ÅT = 298 K
c = 24.289 (5) Å0.23 × 0.20 × 0.20 mm
β = 112.42 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3897 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1997 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.654Rint = 0.074
14447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05120 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
3897 reflectionsΔρmin = 0.53 e Å3
261 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.61788 (6)0.03732 (7)0.13511 (3)0.0778 (3)
O10.3146 (3)0.3022 (4)0.00769 (14)0.0605 (9)
H10.37760.35170.03510.091*
O20.1468 (3)0.1263 (4)0.07827 (14)0.0692 (10)
O30.4712 (3)0.5527 (4)0.14385 (13)0.0601 (8)
O41.1183 (3)0.7762 (3)0.28824 (13)0.0570 (8)
O50.9838 (3)0.9110 (3)0.35146 (13)0.0504 (8)
H50.93050.95200.36760.076*
N10.5836 (4)0.4024 (4)0.07415 (15)0.0448 (9)
N20.6775 (4)0.4898 (4)0.12135 (14)0.0446 (9)
H20.78080.47910.13200.054*
C10.5494 (5)0.2381 (5)0.00796 (18)0.0422 (10)
C20.3905 (5)0.2269 (5)0.02205 (19)0.0450 (10)
C30.3019 (5)0.1318 (5)0.06863 (19)0.0483 (11)
C40.3704 (5)0.0548 (5)0.10141 (19)0.0516 (11)
H40.31020.00750.13300.062*
C50.5288 (5)0.0694 (5)0.08767 (19)0.0515 (11)
C60.6186 (5)0.1586 (5)0.04129 (18)0.0477 (11)
H60.72550.16650.03190.057*
C70.6451 (5)0.3319 (5)0.04189 (19)0.0476 (11)
H70.75160.34120.05060.057*
C80.6112 (5)0.5611 (5)0.15561 (18)0.0434 (10)
C90.7141 (4)0.6511 (4)0.20645 (17)0.0392 (10)
C100.8737 (5)0.6677 (4)0.22134 (18)0.0421 (10)
H100.92130.61950.19850.050*
C110.9612 (4)0.7545 (4)0.26950 (18)0.0395 (10)
C120.8909 (5)0.8267 (4)0.30448 (17)0.0389 (10)
C130.7334 (5)0.8129 (5)0.28971 (18)0.0468 (11)
H130.68560.86220.31230.056*
C140.6469 (5)0.7260 (5)0.24137 (19)0.0476 (11)
H140.54000.71680.23160.057*
C150.0554 (6)0.0149 (6)0.1176 (2)0.0779 (16)
H15A0.04660.03890.15730.117*
H15B0.04680.01340.11610.117*
H15C0.10330.08440.10630.117*
C161.1985 (5)0.7209 (6)0.2527 (2)0.0680 (14)
H16A1.18880.61090.24930.102*
H16B1.30690.74840.27090.102*
H16C1.15390.76620.21370.102*
O6A0.1601 (5)0.5145 (11)0.0818 (2)0.061 (3)0.83 (3)
H6A0.248 (2)0.553 (4)0.1037 (19)0.091*
H6B0.108 (4)0.591 (4)0.0621 (18)0.091*
O6B0.161 (3)0.596 (5)0.0998 (16)0.071 (10)0.17 (3)
O70.0002 (3)0.2697 (5)0.00144 (17)0.0817 (11)
H7A0.055 (5)0.327 (6)0.0300 (19)0.123*
H7B0.059 (5)0.221 (6)0.012 (2)0.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0656 (4)0.0946 (5)0.0795 (4)0.0048 (3)0.0346 (3)0.0224 (3)
O10.0426 (18)0.072 (2)0.063 (2)0.0067 (16)0.0166 (16)0.0216 (17)
O20.0376 (18)0.089 (2)0.078 (2)0.0146 (18)0.0190 (17)0.030 (2)
O30.0332 (17)0.078 (2)0.064 (2)0.0127 (16)0.0128 (15)0.0105 (17)
O40.0299 (16)0.070 (2)0.069 (2)0.0099 (15)0.0168 (15)0.0251 (16)
O50.0427 (17)0.058 (2)0.0527 (19)0.0048 (15)0.0208 (15)0.0106 (15)
N10.038 (2)0.045 (2)0.042 (2)0.0051 (17)0.0047 (17)0.0042 (17)
N20.0273 (17)0.053 (2)0.045 (2)0.0014 (16)0.0042 (16)0.0033 (17)
C10.037 (2)0.042 (3)0.044 (3)0.002 (2)0.011 (2)0.003 (2)
C20.045 (3)0.042 (3)0.049 (3)0.002 (2)0.019 (2)0.000 (2)
C30.037 (2)0.049 (3)0.056 (3)0.002 (2)0.015 (2)0.006 (2)
C40.051 (3)0.048 (3)0.050 (3)0.003 (2)0.013 (2)0.008 (2)
C50.051 (3)0.050 (3)0.049 (3)0.002 (2)0.014 (2)0.000 (2)
C60.037 (2)0.058 (3)0.047 (3)0.001 (2)0.015 (2)0.005 (2)
C70.036 (2)0.052 (3)0.048 (3)0.001 (2)0.009 (2)0.007 (2)
C80.034 (2)0.049 (3)0.041 (2)0.003 (2)0.007 (2)0.010 (2)
C90.032 (2)0.041 (2)0.041 (2)0.0017 (18)0.0101 (19)0.0039 (19)
C100.041 (2)0.039 (3)0.046 (3)0.0000 (19)0.017 (2)0.003 (2)
C110.032 (2)0.038 (2)0.049 (3)0.0019 (19)0.016 (2)0.001 (2)
C120.037 (2)0.039 (2)0.038 (2)0.0026 (19)0.011 (2)0.0047 (19)
C130.038 (2)0.056 (3)0.049 (3)0.004 (2)0.019 (2)0.004 (2)
C140.032 (2)0.055 (3)0.057 (3)0.002 (2)0.018 (2)0.005 (2)
C150.049 (3)0.082 (4)0.092 (4)0.018 (3)0.016 (3)0.016 (3)
C160.040 (3)0.087 (4)0.084 (4)0.003 (3)0.031 (3)0.023 (3)
O6A0.037 (3)0.081 (5)0.056 (3)0.009 (2)0.010 (2)0.009 (3)
O6B0.062 (12)0.077 (14)0.074 (13)0.001 (8)0.025 (9)0.026 (8)
O70.048 (2)0.112 (3)0.083 (3)0.000 (2)0.0222 (18)0.002 (2)
Geometric parameters (Å, º) top
Br1—C51.895 (4)C8—C91.465 (5)
O1—C21.353 (5)C9—C101.389 (5)
O1—H10.82C9—C141.390 (5)
O2—C31.365 (5)C10—C111.367 (5)
O2—C151.396 (5)C10—H100.93
O3—C81.218 (5)C11—C121.400 (5)
O4—C111.361 (4)C12—C131.368 (5)
O4—C161.421 (5)C13—C141.368 (6)
O5—C121.353 (4)C13—H130.93
O5—H50.82C14—H140.93
N1—C71.286 (5)C15—H15A0.96
N1—N21.373 (4)C15—H15B0.96
N2—C81.357 (5)C15—H15C0.96
N2—H20.90C16—H16A0.96
C1—C21.382 (5)C16—H16B0.96
C1—C61.392 (5)C16—H16C0.96
C1—C71.448 (6)O6A—O6B0.83 (4)
C2—C31.388 (6)O6A—H6A0.851 (10)
C3—C41.367 (6)O6A—H6B0.853 (10)
C4—C51.381 (6)O6B—H6A0.856 (10)
C4—H40.93O6B—H6B0.858 (10)
C5—C61.358 (6)O7—H7A0.85 (5)
C6—H60.93O7—H7B0.85 (5)
C7—H70.93
C2—O1—H1109.5C11—C10—C9120.3 (4)
C3—O2—C15117.8 (4)C11—C10—H10119.8
C11—O4—C16119.3 (3)C9—C10—H10119.8
C12—O5—H5109.5O4—C11—C10124.8 (4)
C7—N1—N2119.0 (3)O4—C11—C12114.8 (3)
C8—N2—N1118.3 (3)C10—C11—C12120.3 (4)
C8—N2—H2123.6O5—C12—C13122.7 (4)
N1—N2—H2116.8O5—C12—C11117.4 (3)
C2—C1—C6120.3 (4)C13—C12—C11119.9 (4)
C2—C1—C7120.1 (4)C14—C13—C12119.3 (4)
C6—C1—C7119.6 (4)C14—C13—H13120.3
O1—C2—C1123.7 (4)C12—C13—H13120.3
O1—C2—C3117.2 (4)C13—C14—C9122.0 (4)
C1—C2—C3119.1 (4)C13—C14—H14119.0
O2—C3—C4125.1 (4)C9—C14—H14119.0
O2—C3—C2114.6 (4)O2—C15—H15A109.5
C4—C3—C2120.3 (4)O2—C15—H15B109.5
C3—C4—C5120.0 (4)H15A—C15—H15B109.5
C3—C4—H4120.0O2—C15—H15C109.5
C5—C4—H4120.0H15A—C15—H15C109.5
C6—C5—C4120.7 (4)H15B—C15—H15C109.5
C6—C5—Br1120.8 (3)O4—C16—H16A109.5
C4—C5—Br1118.5 (3)O4—C16—H16B109.5
C5—C6—C1119.5 (4)H16A—C16—H16B109.5
C5—C6—H6120.2O4—C16—H16C109.5
C1—C6—H6120.2H16A—C16—H16C109.5
N1—C7—C1120.3 (4)H16B—C16—H16C109.5
N1—C7—H7119.8O6B—O6A—H6A61.2 (18)
C1—C7—H7119.8O6B—O6A—H6B61.3 (17)
O3—C8—N2121.2 (4)H6A—O6A—H6B104 (2)
O3—C8—C9121.5 (4)O6A—O6B—H6A60.6 (18)
N2—C8—C9117.3 (4)O6A—O6B—H6B60.6 (18)
C10—C9—C14118.2 (4)H6A—O6B—H6B103 (2)
C10—C9—C8124.1 (4)H7A—O7—H7B109 (3)
C14—C9—C8117.7 (4)
C7—N1—N2—C8178.8 (4)N1—N2—C8—O32.5 (6)
C6—C1—C2—O1179.1 (4)N1—N2—C8—C9178.8 (3)
C7—C1—C2—O11.3 (6)O3—C8—C9—C10178.6 (4)
C6—C1—C2—C32.0 (6)N2—C8—C9—C100.2 (6)
C7—C1—C2—C3177.6 (4)O3—C8—C9—C140.5 (6)
C15—O2—C3—C411.5 (7)N2—C8—C9—C14179.2 (3)
C15—O2—C3—C2169.8 (4)C14—C9—C10—C110.6 (6)
O1—C2—C3—O20.2 (6)C8—C9—C10—C11179.7 (4)
C1—C2—C3—O2178.8 (4)C16—O4—C11—C107.5 (6)
O1—C2—C3—C4178.6 (4)C16—O4—C11—C12173.8 (4)
C1—C2—C3—C42.4 (6)C9—C10—C11—O4179.1 (4)
O2—C3—C4—C5179.8 (4)C9—C10—C11—C120.4 (6)
C2—C3—C4—C51.1 (7)O4—C11—C12—O51.3 (5)
C3—C4—C5—C60.7 (7)C10—C11—C12—O5179.9 (3)
C3—C4—C5—Br1179.1 (3)O4—C11—C12—C13179.8 (3)
C4—C5—C6—C11.1 (6)C10—C11—C12—C131.4 (6)
Br1—C5—C6—C1178.7 (3)O5—C12—C13—C14179.7 (4)
C2—C1—C6—C50.2 (6)C11—C12—C13—C141.2 (6)
C7—C1—C6—C5179.3 (4)C12—C13—C14—C90.2 (6)
N2—N1—C7—C1179.6 (3)C10—C9—C14—C130.8 (6)
C2—C1—C7—N11.6 (6)C8—C9—C14—C13179.9 (4)
C6—C1—C7—N1178.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O10.85 (5)2.34 (5)2.875 (4)122 (4)
O7—H7B···O20.85 (5)2.22 (5)3.027 (5)159 (5)
O7—H7A···O6A0.85 (5)2.06 (2)2.884 (10)163 (6)
O6A—H6B···O7i0.85 (1)1.91 (4)2.740 (8)163 (5)
O6A—H6A···O30.85 (1)1.92 (2)2.715 (6)154 (4)
N2—H2···O5ii0.902.143.028 (4)169
O5—H5···O6Biii0.821.852.64 (3)163
O5—H5···O6Aiii0.821.812.618 (5)166
O1—H1···N10.821.832.550 (4)145
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15BrN2O5·2H2O
Mr431.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.262 (2), 8.679 (2), 24.289 (5)
β (°) 112.42 (3)
V3)1804.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.618, 0.654
No. of measured, independent and
observed [I > 2σ(I)] reflections
14447, 3897, 1997
Rint0.074
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.135, 1.02
No. of reflections3897
No. of parameters261
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.53

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O10.85 (5)2.34 (5)2.875 (4)122 (4)
O7—H7B···O20.85 (5)2.22 (5)3.027 (5)159 (5)
O7—H7A···O6A0.85 (5)2.06 (2)2.884 (10)163 (6)
O6A—H6B···O7i0.85 (1)1.91 (4)2.740 (8)163 (5)
O6A—H6A···O30.85 (1)1.92 (2)2.715 (6)154 (4)
N2—H2···O5ii0.902.143.028 (4)169
O5—H5···O6Biii0.821.852.64 (3)163
O5—H5···O6Aiii0.821.812.618 (5)166
O1—H1···N10.821.832.550 (4)145
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Scientific Research Foundation of Shaanxi University of Technology for financial support (project No. SLGQD0708).

References

First citationAbdul Alhadi, A. A., Ali, H. M. & Ng, S. W. (2009). Acta Cryst. E65, o908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008c). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayana, B., Siddaraju, B. P., Raju, C. R., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o3522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds