organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3-[(4-meth­oxy­phen­yl)amino­meth­yl]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 August 2009; accepted 17 August 2009; online 22 August 2009)

The mol­ecule of the title compound, C10H13N5OS, is approximately planar, the dihedral angle between the triazole and benzene rings being 4.53 (10)°. The amino group adopts a pyramidal configuration. In the crystal structure, mol­ecules are linked into two-dimensional networks parallel to (001) by inter­molecular N—H⋯S and N—H⋯N hydrogen bonds. In addition, an S⋯S short contact of 3.3435 (7) Å is observed.

Related literature

For the pharmacological applications of 1,2,4-triazole derivatives, see: Amir et al. (2008[Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056-2066.]); Isloor et al. (2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Krzysztof et al. (2008[Krzysztof, S., Tuzimski, T., Rzymowska, J., Kazimierz, P. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404-419.]); Kuş et al. (2008[Kuş, C., Ayhan-Kılcıgil, G., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294-4303.]); Padmavathi et al. (2008[Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917-924.]). For the preparation, see: Holla & Udupa (1992[Holla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305-318.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009a). Acta Cryst. E65, o1918-o1919.],b[Fun, H.-K., Liew, W.-C., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009b). Acta Cryst. E65, o1910-o1911.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C10H13N5OS

  • Mr = 251.31

  • Monoclinic, C 2

  • a = 11.5142 (2) Å

  • b = 5.8804 (1) Å

  • c = 16.6891 (3) Å

  • β = 95.292 (1)°

  • V = 1125.17 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.33 × 0.18 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.913, Tmax = 0.994

  • 5827 measured reflections

  • 2365 independent reflections

  • 2126 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.068

  • S = 1.04

  • 2365 reflections

  • 171 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 588 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.84 (2) 2.55 (2) 3.3672 (18) 164 (2)
N4—H1N4⋯N5ii 0.82 (3) 2.60 (3) 3.410 (2) 169 (3)
N5—H1N5⋯N1iii 0.89 (2) 2.48 (2) 3.133 (2) 130 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,2,4-triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anti-inflammatory, anticancer and antioxidant properties (Amir et al., 2008; Krzysztof et al., 2008; Kuş et al., 2008; Padmavathi et al., 2008). A few derivatives of triazoles have exhibited antimicrobial activity (Isloor et al., 2009). Some of the present day drugs such as ribavirin (antiviral agent), rizatriptan (antimigraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing the triazole nucleus. The amino and mercapto groups of 1,2,4-triazoles serve as readily accessible nucleophilic centers for the preparation of N-bridged heterocycles. Keeping in view of the biological importance, we have synthesized the title compound and its crystal structure is reported here.

Bond lengths and angles in the title compound (Fig. 1) are comparable to those observed in related structures (Fun et al., 2009a,b). The molecule is approximately planar, with the dihedral angle between the triazole (N1/N2/C1/N3/C2) and benzene rings (C4-C9) being 4.53 (10)°.

In the crystal structure, the molecules are linked by intermolecular N2—H1N2···S1, N4—H1N4···N5 and N5—H1N5···N1 hydrogen bonds into a two-dimensional network parallel to ab plane (Fig. 2 and Table 1). In addition, a S···S(1-x, y, -z) short contact of 3.3435 (7) Å is observed.

Related literature top

For the pharmacological applications of 1,2,4-triazole derivatives, see: Amir et al. (2008); Isloor et al. (2009); Krzysztof et al. (2008); Kuş et al. (2008); Padmavathi et al. (2008). For the preparation, see: Holla & Udupa (1992). For related structures, see: Fun et al. (2009a,b). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

2-[(4-Methoxyphenyl)amino]acetohydrazide (19.5 g, 0.1 mol) was added slowly to a solution of potassium hydroxide (8.4 g, 0.15 mol) in ethanol (150 ml). The resulting mixture was stirred well till a clear solution was obtained. Carbon disulfide (11.4 g, 0.15 mol) was added dropwise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture (Holla & Udupa, 1992) was diluted with 100 ml of ether and the precipitate formed was collected by filtration, washed with dry ether and dried at 338 K under vacuum. It was used for the next step without any purification.

A mixture of above synthesized potassium dithiocarbazinate (30.9 g, 0.1 mol), hydrazine hydrate (99%, 0.2 mol) and water (2 ml) was gently heated to boil for 30 min. Heating was continued until the evaluation of hydrogen sulfide ceases. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with 2 N HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was done from ethanol (yield: 15.1 g, 67.7%; m.p. 484–486 K).

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C-H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the b axis, showing two-dimensional networks parallel to ab plane. Intermolecular hydrogen bonds are shown as dashed lines.
4-Amino-3-[(4-methoxyphenyl)aminomethyl]-1H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C10H13N5OSF(000) = 528
Mr = 251.31Dx = 1.484 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2961 reflections
a = 11.5142 (2) Åθ = 3.6–32.2°
b = 5.8804 (1) ŵ = 0.28 mm1
c = 16.6891 (3) ÅT = 100 K
β = 95.292 (1)°Plate, colourless
V = 1125.17 (3) Å30.33 × 0.18 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2365 independent reflections
Radiation source: fine-focus sealed tube2126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 30.0°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1516
Tmin = 0.913, Tmax = 0.994k = 85
5827 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0277P)2 + 0.6764P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2365 reflectionsΔρmax = 0.33 e Å3
171 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 588 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C10H13N5OSV = 1125.17 (3) Å3
Mr = 251.31Z = 4
Monoclinic, C2Mo Kα radiation
a = 11.5142 (2) ŵ = 0.28 mm1
b = 5.8804 (1) ÅT = 100 K
c = 16.6891 (3) Å0.33 × 0.18 × 0.02 mm
β = 95.292 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2126 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.994Rint = 0.024
5827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.33 e Å3
S = 1.04Δρmin = 0.26 e Å3
2365 reflectionsAbsolute structure: Flack (1983), 588 Friedel pairs
171 parametersAbsolute structure parameter: 0.03 (7)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37035 (4)0.34412 (9)0.03759 (3)0.01571 (11)
O10.26796 (11)1.2919 (3)0.42305 (8)0.0248 (4)
N10.07536 (13)0.3929 (3)0.13658 (9)0.0171 (4)
N20.15394 (14)0.2872 (3)0.09067 (10)0.0164 (4)
N30.23563 (13)0.5947 (3)0.13167 (9)0.0136 (3)
N40.02128 (14)0.6826 (3)0.24608 (10)0.0167 (4)
N50.30984 (14)0.7845 (3)0.14247 (10)0.0171 (4)
C10.25184 (15)0.4074 (3)0.08580 (11)0.0144 (4)
C20.12844 (15)0.5803 (4)0.16083 (11)0.0138 (4)
C30.08129 (16)0.7617 (4)0.21027 (12)0.0158 (4)
H3A0.14040.80720.25240.019*
H3B0.06130.89330.17680.019*
C40.08548 (14)0.8413 (4)0.28707 (10)0.0146 (3)
C50.04122 (16)1.0556 (4)0.31036 (12)0.0174 (4)
H5A0.03071.10190.29500.021*
C60.10392 (16)1.1985 (4)0.35610 (12)0.0187 (4)
H6A0.07321.33980.37150.022*
C70.21184 (16)1.1350 (4)0.37941 (11)0.0168 (4)
C80.25711 (16)0.9225 (4)0.35578 (11)0.0174 (4)
H8A0.32950.87760.37080.021*
C90.19487 (15)0.7792 (4)0.31039 (11)0.0163 (4)
H9A0.22610.63840.29490.020*
C100.37125 (17)1.2205 (4)0.45705 (12)0.0219 (5)
H10A0.39821.34060.48960.033*
H10B0.35451.08810.48970.033*
H10C0.43051.18480.41470.033*
H1N20.1335 (18)0.175 (4)0.0617 (13)0.016 (6)*
H1N40.063 (2)0.601 (5)0.2156 (15)0.032 (7)*
H1N50.381 (2)0.728 (5)0.1550 (16)0.047 (8)*
H2N50.3141 (19)0.845 (6)0.0921 (15)0.042 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01344 (18)0.0157 (2)0.0184 (2)0.0019 (2)0.00344 (15)0.0002 (2)
O10.0220 (7)0.0201 (9)0.0342 (8)0.0015 (6)0.0123 (6)0.0096 (7)
N10.0157 (7)0.0161 (10)0.0201 (8)0.0007 (7)0.0052 (6)0.0000 (7)
N20.0186 (7)0.0117 (9)0.0197 (8)0.0021 (6)0.0050 (6)0.0030 (7)
N30.0126 (7)0.0149 (9)0.0135 (7)0.0008 (6)0.0015 (6)0.0003 (7)
N40.0150 (8)0.0149 (9)0.0208 (9)0.0039 (7)0.0051 (7)0.0033 (7)
N50.0142 (7)0.0148 (9)0.0220 (9)0.0050 (6)0.0006 (6)0.0019 (7)
C10.0143 (8)0.0155 (10)0.0135 (8)0.0025 (7)0.0011 (7)0.0001 (7)
C20.0132 (8)0.0156 (10)0.0126 (9)0.0022 (7)0.0015 (7)0.0029 (8)
C30.0151 (8)0.0140 (10)0.0183 (9)0.0012 (7)0.0020 (7)0.0006 (8)
C40.0153 (7)0.0154 (9)0.0132 (7)0.0032 (9)0.0012 (6)0.0006 (10)
C50.0139 (9)0.0176 (11)0.0211 (10)0.0015 (8)0.0043 (7)0.0005 (8)
C60.0188 (9)0.0146 (10)0.0228 (10)0.0027 (8)0.0020 (8)0.0037 (8)
C70.0174 (9)0.0165 (10)0.0167 (9)0.0015 (8)0.0030 (7)0.0005 (8)
C80.0157 (9)0.0184 (10)0.0187 (9)0.0014 (8)0.0044 (7)0.0013 (8)
C90.0163 (8)0.0121 (10)0.0203 (9)0.0024 (7)0.0002 (7)0.0006 (8)
C100.0177 (9)0.0258 (13)0.0228 (10)0.0016 (9)0.0057 (8)0.0032 (9)
Geometric parameters (Å, º) top
S1—C11.6883 (18)C3—H3A0.97
O1—C71.373 (2)C3—H3B0.97
O1—C101.427 (2)C4—C51.401 (3)
N1—C21.306 (3)C4—C91.401 (2)
N1—N21.386 (2)C5—C61.383 (3)
N2—C11.339 (2)C5—H5A0.93
N2—H1N20.84 (2)C6—C71.387 (3)
N3—C11.364 (3)C6—H6A0.93
N3—C21.370 (2)C7—C81.397 (3)
N3—N51.407 (2)C8—C91.377 (3)
N4—C41.407 (3)C8—H8A0.93
N4—C31.448 (2)C9—H9A0.93
N4—H1N40.82 (3)C10—H10A0.96
N5—H1N50.89 (3)C10—H10B0.96
N5—H2N50.92 (3)C10—H10C0.96
C2—C31.482 (3)
C7—O1—C10117.60 (17)H3A—C3—H3B108.1
C2—N1—N2103.83 (15)C5—C4—C9118.09 (18)
C1—N2—N1113.14 (16)C5—C4—N4122.53 (16)
C1—N2—H1N2125.0 (14)C9—C4—N4119.3 (2)
N1—N2—H1N2120.6 (14)C6—C5—C4120.33 (17)
C1—N3—C2108.88 (16)C6—C5—H5A119.8
C1—N3—N5126.84 (15)C4—C5—H5A119.8
C2—N3—N5124.04 (17)C5—C6—C7121.20 (19)
C4—N4—C3118.22 (18)C5—C6—H6A119.4
C4—N4—H1N4112.7 (18)C7—C6—H6A119.4
C3—N4—H1N4112.5 (17)O1—C7—C6116.46 (18)
N3—N5—H1N5105.8 (19)O1—C7—C8124.69 (17)
N3—N5—H2N5105.9 (18)C6—C7—C8118.83 (18)
H1N5—N5—H2N5103 (2)C9—C8—C7120.19 (17)
N2—C1—N3103.45 (15)C9—C8—H8A119.9
N2—C1—S1129.38 (15)C7—C8—H8A119.9
N3—C1—S1127.15 (15)C8—C9—C4121.4 (2)
N1—C2—N3110.68 (18)C8—C9—H9A119.3
N1—C2—C3126.50 (17)C4—C9—H9A119.3
N3—C2—C3122.78 (18)O1—C10—H10A109.5
N4—C3—C2110.69 (17)O1—C10—H10B109.5
N4—C3—H3A109.5H10A—C10—H10B109.5
C2—C3—H3A109.5O1—C10—H10C109.5
N4—C3—H3B109.5H10A—C10—H10C109.5
C2—C3—H3B109.5H10B—C10—H10C109.5
C2—N1—N2—C10.9 (2)N3—C2—C3—N4168.35 (17)
N1—N2—C1—N31.1 (2)C3—N4—C4—C514.9 (3)
N1—N2—C1—S1179.40 (14)C3—N4—C4—C9169.36 (17)
C2—N3—C1—N20.9 (2)C9—C4—C5—C61.0 (3)
N5—N3—C1—N2175.43 (17)N4—C4—C5—C6174.84 (19)
C2—N3—C1—S1179.25 (15)C4—C5—C6—C70.5 (3)
N5—N3—C1—S16.3 (3)C10—O1—C7—C6171.73 (18)
N2—N1—C2—N30.2 (2)C10—O1—C7—C810.0 (3)
N2—N1—C2—C3177.94 (18)C5—C6—C7—O1178.46 (18)
C1—N3—C2—N10.4 (2)C5—C6—C7—C80.1 (3)
N5—N3—C2—N1175.13 (17)O1—C7—C8—C9178.47 (18)
C1—N3—C2—C3177.35 (17)C6—C7—C8—C90.2 (3)
N5—N3—C2—C32.7 (3)C7—C8—C9—C40.2 (3)
C4—N4—C3—C2172.48 (15)C5—C4—C9—C80.8 (3)
N1—C2—C3—N414.2 (3)N4—C4—C9—C8175.13 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (2)2.55 (2)3.3672 (18)164 (2)
N4—H1N4···N5ii0.82 (3)2.60 (3)3.410 (2)169 (3)
N5—H1N5···N1iii0.89 (2)2.48 (2)3.133 (2)130 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC10H13N5OS
Mr251.31
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)11.5142 (2), 5.8804 (1), 16.6891 (3)
β (°) 95.292 (1)
V3)1125.17 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.33 × 0.18 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.913, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5827, 2365, 2126
Rint0.024
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.068, 1.04
No. of reflections2365
No. of parameters171
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.26
Absolute structureFlack (1983), 588 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (2)2.55 (2)3.3672 (18)164 (2)
N4—H1N4···N5ii0.82 (3)2.60 (3)3.410 (2)169 (3)
N5—H1N5···N1iii0.89 (2)2.48 (2)3.133 (2)130 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM fellowship. AMI is grateful to the Head of the Department of Chemistry and Director, NITK, Surathkal, India, for providing research facilities.

References

First citationAmir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem. 43, 2056–2066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009a). Acta Cryst. E65, o1918–o1919.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Liew, W.-C., Vijesh, A. M., Padaki, M. & Isloor, A. M. (2009b). Acta Cryst. E65, o1910–o1911.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolla, B. S. & Udupa, K. V. (1992). Farmaco, 47, 305–318.  PubMed CAS Web of Science Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrzysztof, S., Tuzimski, T., Rzymowska, J., Kazimierz, P. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science PubMed Google Scholar
First citationKuş, C., Ayhan-Kılcıgil, G., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Can-Eke, B. (2008). Bioorg. Med. Chem. 16, 4294–4303.  Web of Science PubMed Google Scholar
First citationPadmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem. 43, 917–924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds