organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[1-(4-Chloro­phen­yl)ethyl­­idene]carbono­hydrazide

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: dulingyun@lcu.edu.cn

(Received 7 July 2009; accepted 31 July 2009; online 12 August 2009)

The mol­ecular skeleton of the title mol­ecule, C9H11ClN4O, is essentially planar, the dihedral angle between the ring and the and N/N/C plane being 6.7 (3)°. In the crystal, inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into ribbons propagated along [010].

Related literature

For the biological activity of carbonohydrazide derivatives, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]). For related structures, see Meyers et al. (1995[Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775-777.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11ClN4O

  • Mr = 226.67

  • Monoclinic, P 21 /c

  • a = 14.6429 (14) Å

  • b = 9.6041 (12) Å

  • c = 7.4327 (9) Å

  • β = 90.102 (1)°

  • V = 1045.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.960

  • 4419 measured reflections

  • 1837 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.01

  • 1837 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N4i 0.86 2.24 3.024 (3) 152
N3—H3⋯O1ii 0.86 2.09 2.850 (3) 147
N4—H4A⋯O1iii 0.89 2.34 3.206 (3) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A number of carbonohydrazide derivatives have been claimed to possess a bioactivity such as antibacterial, antifungal, anticonvulsant and anticancer activities (Loncle et al., 2004). We describe in this paper a user-friendly, solvent-free protocol for the synthesis of substituted carbonohydrazide starting from the fragrant ketones and carbohydrazide under solvent-free conditions in this paper. Using this method, which can be considered as a a general method for the synthesis of substituted carbonohydrazides, we obtained the title compound, (I). We present here its crystal structure.

In (I) (Fig. 1), the bond lengths and angles are normal and correspond to those observed in bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). The N4/N3/C1 and N2/N1/C1 planes form a dihedral angle of 4.09 (4)°, while ring C4-C9 and N2/N1/C1 plane form a dihedral angle of 2.64 (29)°.

In the crystal, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into ribbons propagated in direction [010].

Related literature top

For the biological activity of carbonohydrazide derivatives, see: Loncle et al. (2004). For similar crystal structures, see Meyers et al. (1995).

Experimental top

p-Chloroacetophenone (5.0 mmol) and carbohydrazide (5.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C9H11ClN4O: C 47.69, H 4.89, N 24.72%; found: C 47.63, H 4.75, N 24.64%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C) (C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
1-[1-(4-Chlorophenyl)ethylidene]carbonohydrazide top
Crystal data top
C9H11ClN4OF(000) = 472
Mr = 226.67Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.6429 (14) ÅCell parameters from 963 reflections
b = 9.6041 (12) Åθ = 2.5–22.7°
c = 7.4327 (9) ŵ = 0.34 mm1
β = 90.102 (1)°T = 298 K
V = 1045.3 (2) Å3Needle, colourless
Z = 40.40 × 0.30 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1837 independent reflections
Radiation source: fine-focus sealed tube1085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1117
Tmin = 0.875, Tmax = 0.960k = 1111
4419 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3562P]
where P = (Fo2 + 2Fc2)/3
1837 reflections(Δ/σ)max = 0.002
137 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H11ClN4OV = 1045.3 (2) Å3
Mr = 226.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.6429 (14) ŵ = 0.34 mm1
b = 9.6041 (12) ÅT = 298 K
c = 7.4327 (9) Å0.40 × 0.30 × 0.12 mm
β = 90.102 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1837 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1085 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.960Rint = 0.037
4419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
1837 reflectionsΔρmin = 0.20 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94869 (7)1.35122 (11)0.60169 (13)0.0725 (4)
N10.57886 (16)0.7625 (2)0.3769 (3)0.0405 (7)
H10.59450.67910.40570.049*
N20.63579 (17)0.8715 (2)0.4127 (3)0.0375 (6)
N30.47946 (16)0.9177 (2)0.2451 (3)0.0429 (7)
H30.51750.98280.27190.051*
N40.39947 (16)0.9500 (2)0.1494 (3)0.0434 (7)
H4A0.40010.90580.04430.065*
H4B0.35130.92240.21290.065*
O10.44329 (14)0.6900 (2)0.2677 (3)0.0460 (6)
C10.4970 (2)0.7867 (3)0.2949 (4)0.0358 (7)
C20.7519 (2)0.7025 (3)0.5085 (4)0.0518 (9)
H2A0.70620.64790.56820.078*
H2B0.80560.70750.58250.078*
H2C0.76690.66010.39550.078*
C30.7158 (2)0.8469 (3)0.4762 (4)0.0357 (7)
C40.77306 (19)0.9705 (3)0.5105 (4)0.0353 (7)
C50.8596 (2)0.9605 (3)0.5861 (4)0.0458 (8)
H50.88210.87330.61730.055*
C60.9131 (2)1.0768 (4)0.6161 (4)0.0511 (9)
H60.97101.06760.66630.061*
C70.8802 (2)1.2056 (3)0.5714 (4)0.0443 (8)
C80.7950 (2)1.2196 (4)0.4976 (4)0.0513 (9)
H80.77291.30740.46780.062*
C90.7423 (2)1.1031 (3)0.4676 (4)0.0475 (9)
H90.68451.11360.41730.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0749 (7)0.0666 (7)0.0758 (7)0.0359 (5)0.0187 (5)0.0017 (5)
N10.0364 (16)0.0234 (14)0.0618 (18)0.0002 (12)0.0087 (13)0.0031 (12)
N20.0367 (15)0.0287 (15)0.0471 (15)0.0058 (12)0.0022 (12)0.0013 (11)
N30.0377 (16)0.0238 (15)0.0671 (18)0.0020 (12)0.0125 (13)0.0000 (12)
N40.0361 (15)0.0335 (15)0.0605 (17)0.0027 (12)0.0060 (12)0.0004 (12)
O10.0397 (13)0.0231 (12)0.0753 (16)0.0055 (10)0.0085 (11)0.0006 (10)
C10.0372 (19)0.0216 (18)0.0488 (19)0.0004 (14)0.0016 (15)0.0018 (14)
C20.055 (2)0.043 (2)0.058 (2)0.0051 (18)0.0117 (17)0.0020 (16)
C30.0360 (19)0.0370 (18)0.0342 (16)0.0020 (15)0.0013 (14)0.0022 (14)
C40.0332 (18)0.0379 (19)0.0349 (17)0.0019 (14)0.0016 (14)0.0011 (14)
C50.042 (2)0.044 (2)0.051 (2)0.0002 (17)0.0057 (16)0.0064 (16)
C60.041 (2)0.061 (3)0.052 (2)0.0070 (19)0.0125 (16)0.0029 (18)
C70.045 (2)0.045 (2)0.0431 (19)0.0125 (17)0.0041 (16)0.0033 (15)
C80.052 (2)0.037 (2)0.065 (2)0.0075 (17)0.0142 (18)0.0026 (16)
C90.0366 (19)0.042 (2)0.064 (2)0.0034 (16)0.0142 (16)0.0021 (17)
Geometric parameters (Å, º) top
Cl1—C71.735 (3)C2—H2B0.9600
N1—C11.364 (4)C2—H2C0.9600
N1—N21.364 (3)C3—C41.476 (4)
N1—H10.8600C4—C51.388 (4)
N2—C31.285 (4)C4—C91.387 (4)
N3—C11.336 (3)C5—C61.382 (4)
N3—N41.404 (3)C5—H50.9300
N3—H30.8600C6—C71.368 (4)
N4—H4A0.8900C6—H60.9300
N4—H4B0.8900C7—C81.369 (4)
O1—C11.234 (3)C8—C91.378 (4)
C2—C31.502 (4)C8—H80.9300
C2—H2A0.9600C9—H90.9300
C1—N1—N2119.5 (2)N2—C3—C2123.3 (3)
C1—N1—H1120.2C4—C3—C2121.1 (3)
N2—N1—H1120.3C5—C4—C9116.9 (3)
C3—N2—N1119.1 (2)C5—C4—C3122.1 (3)
C1—N3—N4120.5 (2)C9—C4—C3121.0 (3)
C1—N3—H3119.7C6—C5—C4121.7 (3)
N4—N3—H3119.7C6—C5—H5119.1
N3—N4—H4A109.2C4—C5—H5119.1
N3—N4—H4B109.1C7—C6—C5119.5 (3)
H4A—N4—H4B109.5C7—C6—H6120.2
O1—C1—N3122.8 (3)C5—C6—H6120.2
O1—C1—N1120.3 (3)C6—C7—C8120.4 (3)
N3—C1—N1116.9 (3)C6—C7—Cl1119.6 (2)
C3—C2—H2A109.5C8—C7—Cl1119.9 (3)
C3—C2—H2B109.5C7—C8—C9119.7 (3)
H2A—C2—H2B109.5C7—C8—H8120.2
C3—C2—H2C109.5C9—C8—H8120.2
H2A—C2—H2C109.5C8—C9—C4121.8 (3)
H2B—C2—H2C109.5C8—C9—H9119.1
N2—C3—C4115.6 (3)C4—C9—H9119.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.862.243.024 (3)152
N3—H3···O1ii0.862.092.850 (3)147
N4—H4A···O1iii0.892.343.206 (3)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC9H11ClN4O
Mr226.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.6429 (14), 9.6041 (12), 7.4327 (9)
β (°) 90.102 (1)
V3)1045.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.40 × 0.30 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4419, 1837, 1085
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.01
No. of reflections1837
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N4i0.862.243.024 (3)151.6
N3—H3···O1ii0.862.092.850 (3)146.7
N4—H4A···O1iii0.892.343.206 (3)164.3
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support by the Science Foundation of China (grant No. 20877037).

References

First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds