organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[(1-butyl-1H-indol-3-yl)carbonyl­amino]propionate

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 22 July 2009; accepted 28 July 2009; online 8 August 2009)

In the title mol­ecule, C17H22N2O3, the mean plane of the terminal (C=O)OMe fragment and the indole plane form a dihedral angle of 78.94 (3)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extended along the c axis. The crystal packing exhibits ππ inter­actions, indicated by the short distance of 3.472 (2) Å between the centroids of the five-membered heterocycles of neighbouring mol­ecules.

Related literature

For the bioactivity of indole derivatives, see: Fabio et al. (2007[Fabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254-2259.]); Sharma et al. (2004[Sharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319-4321.]). For related structures, see: Zeng et al. (2005[Zeng, X. C., Xu, S. H., Li, P. R. & Deng, Q. Y. (2005). Chin. J. Struct. Chem. 24, 299-302.]); Siddiquee et al. (2009[Siddiquee, T., Islam, S., Bennett, D., Zeller, M. & Hossain, M. (2009). Acta Cryst. E65, o1802-o1803.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N2O3

  • Mr = 302.37

  • Monoclinic, P 21 /c

  • a = 14.144 (3) Å

  • b = 12.685 (3) Å

  • c = 9.198 (2) Å

  • β = 107.151 (4)°

  • V = 1576.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.46 × 0.42 × 0.17 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.985

  • 7760 measured reflections

  • 3093 independent reflections

  • 2169 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.05

  • 3093 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.88 2.07 2.860 (2) 149
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker,1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many indole derivatives show important bioactivities, such as metabotropic receptor antagonists (Fabio et al., 2007) and protein kinase inhibiting activity (Sharma et al., 2004). In continuation of our previous structural investigations of 3-trichloroacetylindole (Zeng et al., 2005), we report here the crystal structure of the title compound, (I).

In (I) (Fig.1), all bond lengths and angles are unexceptional and correspond to those observed in the related compounds (Zeng et al., 2005; Siddiquee et al., 2009). In the crystal structure, adjacent molecules are linked through N2—H2A···O1 hydrogen bonds, forming chains extending along the c axis. The crystal packing exhibits ππ interactions proved by short distance of 3.472 (2) Å between the centroids of five-membered heterocycles of the neighbouring molecules.

Related literature top

For the bioactivity of indole derivatives, see: Fabio et al. (2007); Sharma et al. (2004). For related structures, see: Zeng et al. (2005); Siddiquee et al. (2009).

Experimental top

A suspension of potassium carbonate (1.80 g, 13.0 mmol), 1-bromobutane (0.35 ml, 3.25 mmol) and methyl 3-(1H-Indole-3-carbonyl)aminopropionate (0.80 g, 3.25 mmol) in acetonitrile (30 ml) magnetically stirred at 328 K for 72 h. After filtration, the filtrate was evaporated in vacuo, and the residue was recrystallized with ethanol/water solution (1:1 v/v). Then the recrystallized solid was further purified by column chromatography on silica gel (petroleum ether/EtOAc, 1:1 v/v) to yield I (m.p. 367 K, 91.6%). Colourless crystals suitable for X-ray analysis were obtained over a period of five days by slow evaporation at room temperature of a petroleum ether/EtOAc solution (1:1 v/v).

Refinement top

The H atoms were positioned geometrically [C—H = 0.99Å for CH2, 0.98Å for CH3, 0.95Å for CH(aromatic) and N—H = 0.88 Å] and refined using a riding model, with Uiso = 1.2Ueq (1.5Ueq for the methyl group) of the parent atom.

Computing details top

Data collection: SMART (Bruker,1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Methyl 3-[(1-butyl-1H-indol-3-yl)carbonylamino]propionate top
Crystal data top
C17H22N2O3Dx = 1.274 Mg m3
Mr = 302.37Melting point: 367 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.144 (3) ÅCell parameters from 2799 reflections
b = 12.685 (3) Åθ = 2.8–26.9°
c = 9.198 (2) ŵ = 0.09 mm1
β = 107.151 (4)°T = 173 K
V = 1576.8 (6) Å3Plate, colourless
Z = 40.46 × 0.42 × 0.17 mm
F(000) = 648
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3093 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 179
Tmin = 0.961, Tmax = 0.985k = 1513
7760 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3821P]
where P = (Fo2 + 2Fc2)/3
3093 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C17H22N2O3V = 1576.8 (6) Å3
Mr = 302.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.144 (3) ŵ = 0.09 mm1
b = 12.685 (3) ÅT = 173 K
c = 9.198 (2) Å0.46 × 0.42 × 0.17 mm
β = 107.151 (4)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3093 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2169 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.985Rint = 0.037
7760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
3093 reflectionsΔρmin = 0.27 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32207 (9)0.17769 (11)1.18054 (15)0.0326 (3)
N20.27815 (11)0.22657 (13)0.93470 (18)0.0286 (4)
H20.29440.23010.84950.034*
N10.56995 (11)0.12769 (12)0.95991 (17)0.0271 (4)
O20.07347 (10)0.00166 (12)0.83159 (18)0.0431 (4)
C10.47775 (13)0.16910 (14)0.9284 (2)0.0255 (4)
H10.44190.19870.83310.031*
C20.44315 (13)0.16250 (14)1.0527 (2)0.0251 (4)
O30.06776 (13)0.13614 (14)0.67382 (18)0.0545 (5)
C30.52016 (13)0.11227 (14)1.1707 (2)0.0259 (4)
C90.34451 (13)0.19061 (15)1.0605 (2)0.0258 (4)
C40.53054 (14)0.07969 (15)1.3199 (2)0.0300 (4)
H40.47970.09311.36590.036*
C120.08303 (14)0.10345 (18)0.8007 (2)0.0343 (5)
C140.62646 (14)0.11611 (16)0.8515 (2)0.0292 (4)
H14A0.58220.13020.74790.035*
H14B0.64940.04220.85390.035*
C70.68374 (14)0.03955 (15)1.1879 (2)0.0312 (5)
H70.73540.02661.14360.037*
C80.59785 (13)0.09149 (14)1.1080 (2)0.0255 (4)
C110.11220 (14)0.16838 (17)0.9426 (2)0.0328 (5)
H11A0.14600.12251.02940.039*
H11B0.05170.19650.96190.039*
C100.18006 (13)0.25988 (16)0.9350 (2)0.0310 (5)
H10A0.14960.30120.84160.037*
H10B0.18620.30681.02340.037*
C150.71526 (14)0.18848 (16)0.8815 (2)0.0300 (5)
H15A0.76270.17080.98130.036*
H15B0.69360.26230.88620.036*
C160.76656 (15)0.17862 (17)0.7580 (2)0.0364 (5)
H16A0.71640.18700.65760.044*
H16B0.81460.23710.76980.044*
C50.61526 (15)0.02801 (16)1.3987 (2)0.0345 (5)
H50.62270.00551.49990.041*
C60.69128 (15)0.00763 (16)1.3333 (2)0.0353 (5)
H60.74890.02881.39060.042*
C170.82035 (16)0.07542 (19)0.7591 (3)0.0455 (6)
H17A0.87220.06760.85640.068*
H17B0.85040.07490.67570.068*
H17C0.77340.01690.74610.068*
C130.04133 (18)0.0678 (2)0.7031 (3)0.0564 (7)
H13A0.02130.04210.63440.085*
H13B0.03190.13890.73820.085*
H13C0.09150.06980.64890.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (7)0.0442 (9)0.0277 (7)0.0011 (6)0.0144 (6)0.0037 (6)
N20.0250 (8)0.0355 (9)0.0278 (9)0.0011 (7)0.0117 (7)0.0009 (7)
N10.0256 (8)0.0307 (9)0.0281 (9)0.0003 (7)0.0124 (7)0.0005 (7)
O20.0347 (8)0.0382 (9)0.0536 (10)0.0014 (7)0.0088 (7)0.0073 (7)
C10.0233 (9)0.0261 (10)0.0274 (10)0.0004 (8)0.0078 (8)0.0002 (8)
C20.0251 (9)0.0247 (10)0.0266 (10)0.0027 (8)0.0095 (8)0.0022 (8)
O30.0636 (11)0.0652 (12)0.0348 (9)0.0229 (9)0.0148 (8)0.0042 (8)
C30.0255 (10)0.0233 (9)0.0301 (10)0.0034 (8)0.0100 (8)0.0026 (8)
C90.0269 (10)0.0252 (10)0.0272 (10)0.0047 (8)0.0107 (8)0.0061 (8)
C40.0307 (10)0.0299 (10)0.0312 (10)0.0062 (8)0.0122 (8)0.0014 (8)
C120.0216 (10)0.0450 (13)0.0387 (12)0.0051 (9)0.0128 (9)0.0032 (10)
C140.0282 (10)0.0329 (11)0.0307 (11)0.0002 (8)0.0152 (8)0.0041 (8)
C70.0273 (10)0.0287 (10)0.0385 (12)0.0001 (8)0.0109 (9)0.0005 (9)
C80.0254 (10)0.0221 (9)0.0297 (10)0.0039 (7)0.0089 (8)0.0034 (8)
C110.0255 (10)0.0413 (12)0.0341 (11)0.0018 (9)0.0129 (8)0.0013 (9)
C100.0246 (10)0.0323 (11)0.0377 (11)0.0024 (8)0.0116 (8)0.0032 (9)
C150.0303 (10)0.0304 (10)0.0333 (11)0.0004 (8)0.0158 (8)0.0008 (8)
C160.0354 (11)0.0419 (12)0.0371 (12)0.0047 (9)0.0187 (9)0.0014 (9)
C50.0388 (12)0.0337 (11)0.0293 (11)0.0044 (9)0.0074 (9)0.0054 (9)
C60.0321 (11)0.0300 (11)0.0401 (12)0.0014 (9)0.0049 (9)0.0055 (9)
C170.0348 (12)0.0590 (16)0.0483 (14)0.0078 (11)0.0211 (11)0.0015 (11)
C130.0407 (13)0.0510 (15)0.0742 (18)0.0051 (11)0.0118 (12)0.0255 (13)
Geometric parameters (Å, º) top
O1—C91.247 (2)C7—C81.387 (3)
N2—C91.337 (2)C7—H70.9500
N2—C101.451 (2)C11—C101.521 (3)
N2—H20.8800C11—H11A0.9900
N1—C11.356 (2)C11—H11B0.9900
N1—C81.380 (2)C10—H10A0.9900
N1—C141.458 (2)C10—H10B0.9900
O2—C121.337 (3)C15—C161.523 (3)
O2—C131.436 (3)C15—H15A0.9900
C1—C21.373 (3)C15—H15B0.9900
C1—H10.9500C16—C171.513 (3)
C2—C31.440 (3)C16—H16A0.9900
C2—C91.462 (3)C16—H16B0.9900
O3—C121.197 (2)C5—C61.402 (3)
C3—C41.399 (3)C5—H50.9500
C3—C81.408 (3)C6—H60.9500
C4—C51.371 (3)C17—H17A0.9800
C4—H40.9500C17—H17B0.9800
C12—C111.495 (3)C17—H17C0.9800
C14—C151.514 (3)C13—H13A0.9800
C14—H14A0.9900C13—H13B0.9800
C14—H14B0.9900C13—H13C0.9800
C7—C61.371 (3)
C9—N2—C10121.69 (16)C12—C11—H11B108.9
C9—N2—H2119.2C10—C11—H11B108.9
C10—N2—H2119.2H11A—C11—H11B107.7
C1—N1—C8108.50 (15)N2—C10—C11113.24 (16)
C1—N1—C14125.40 (16)N2—C10—H10A108.9
C8—N1—C14125.93 (16)C11—C10—H10A108.9
C12—O2—C13116.39 (19)N2—C10—H10B108.9
N1—C1—C2110.77 (16)C11—C10—H10B108.9
N1—C1—H1124.6H10A—C10—H10B107.7
C2—C1—H1124.6C14—C15—C16111.46 (16)
C1—C2—C3106.16 (16)C14—C15—H15A109.3
C1—C2—C9127.25 (17)C16—C15—H15A109.3
C3—C2—C9126.32 (16)C14—C15—H15B109.3
C4—C3—C8118.55 (17)C16—C15—H15B109.3
C4—C3—C2135.00 (17)H15A—C15—H15B108.0
C8—C3—C2106.41 (16)C17—C16—C15114.53 (17)
O1—C9—N2120.95 (17)C17—C16—H16A108.6
O1—C9—C2120.46 (17)C15—C16—H16A108.6
N2—C9—C2118.54 (16)C17—C16—H16B108.6
C5—C4—C3118.83 (18)C15—C16—H16B108.6
C5—C4—H4120.6H16A—C16—H16B107.6
C3—C4—H4120.6C4—C5—C6121.53 (19)
O3—C12—O2122.8 (2)C4—C5—H5119.2
O3—C12—C11125.8 (2)C6—C5—H5119.2
O2—C12—C11111.45 (18)C7—C6—C5121.00 (18)
N1—C14—C15113.98 (15)C7—C6—H6119.5
N1—C14—H14A108.8C5—C6—H6119.5
C15—C14—H14A108.8C16—C17—H17A109.5
N1—C14—H14B108.8C16—C17—H17B109.5
C15—C14—H14B108.8H17A—C17—H17B109.5
H14A—C14—H14B107.7C16—C17—H17C109.5
C6—C7—C8117.49 (18)H17A—C17—H17C109.5
C6—C7—H7121.3H17B—C17—H17C109.5
C8—C7—H7121.3O2—C13—H13A109.5
N1—C8—C7129.22 (17)O2—C13—H13B109.5
N1—C8—C3108.14 (16)H13A—C13—H13B109.5
C7—C8—C3122.60 (18)O2—C13—H13C109.5
C12—C11—C10113.33 (16)H13A—C13—H13C109.5
C12—C11—H11A108.9H13B—C13—H13C109.5
C10—C11—H11A108.9
C8—N1—C1—C20.6 (2)C1—N1—C8—C7177.15 (19)
C14—N1—C1—C2176.18 (16)C14—N1—C8—C71.6 (3)
N1—C1—C2—C30.4 (2)C1—N1—C8—C30.6 (2)
N1—C1—C2—C9174.69 (17)C14—N1—C8—C3176.13 (16)
C1—C2—C3—C4177.5 (2)C6—C7—C8—N1177.13 (18)
C9—C2—C3—C43.0 (3)C6—C7—C8—C30.3 (3)
C1—C2—C3—C80.0 (2)C4—C3—C8—N1178.29 (16)
C9—C2—C3—C8174.42 (17)C2—C3—C8—N10.3 (2)
C10—N2—C9—O14.9 (3)C4—C3—C8—C70.4 (3)
C10—N2—C9—C2177.58 (16)C2—C3—C8—C7177.55 (17)
C1—C2—C9—O1177.91 (18)O3—C12—C11—C1035.6 (3)
C3—C2—C9—O14.7 (3)O2—C12—C11—C10145.76 (17)
C1—C2—C9—N20.4 (3)C9—N2—C10—C1174.0 (2)
C3—C2—C9—N2172.86 (17)C12—C11—C10—N269.1 (2)
C8—C3—C4—C50.6 (3)N1—C14—C15—C16175.70 (16)
C2—C3—C4—C5176.6 (2)C14—C15—C16—C1770.2 (2)
C13—O2—C12—O31.3 (3)C3—C4—C5—C60.2 (3)
C13—O2—C12—C11177.36 (17)C8—C7—C6—C50.7 (3)
C1—N1—C14—C15110.6 (2)C4—C5—C6—C70.5 (3)
C8—N1—C14—C1574.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.882.072.860 (2)149
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H22N2O3
Mr302.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)14.144 (3), 12.685 (3), 9.198 (2)
β (°) 107.151 (4)
V3)1576.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.42 × 0.17
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7760, 3093, 2169
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.05
No. of reflections3093
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker,1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.882.072.860 (2)148.6
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (grant No. 06300581) for generous support of this study.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFabio, R. D., Micheli, F., Alvaro, G., Cavanni, P., Donati, D., Gagliardi, T., Fontana, G., Giovannini, R., Maffeis, M., Mingardi, A., Tranquillini, M. E. & Vitulli, G. (2007). Bioorg. Med. Chem. Lett. 17, 2254–2259.  Web of Science CrossRef PubMed Google Scholar
First citationSharma, V. & Tepe, J. J. (2004). Bioorg. Med. Chem. Lett. 14, 4319–4321.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiquee, T., Islam, S., Bennett, D., Zeller, M. & Hossain, M. (2009). Acta Cryst. E65, o1802–o1803.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZeng, X. C., Xu, S. H., Li, P. R. & Deng, Q. Y. (2005). Chin. J. Struct. Chem. 24, 299–302.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds