metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(1,10-phenanthroline)magnesium dichromate(VI) 1,10-phenanthroline disolvate

aMicroscale Science Institute, College of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bCollege of Chemical Engineering and Biotechnology, Hebei Polytechnic University, Tangshan 063009, People's Republic of China, and cCollege of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
*Correspondence e-mail: tscghua@126.com

(Received 25 July 2009; accepted 29 July 2009; online 8 August 2009)

In the title compound, [Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2, the cation and anion are situated on a twofold rotation axis. The MgII ion is coordinated by four N atoms from two 1,10-phenanthroline ligands and two O atoms from coordinated water mol­ecules in a distorted octa­hedral geometry. Inter­molecular O—H⋯N and O—H⋯O hydrogen bonds and ππ inter­actions between the aromatic rings [shortest centroid–centroid separation = 3.527 (2) Å] link the cations, anions and 1,10-phenanthroline solvent mol­ecules into a hydrogen-bonded cluster.

Related literature

For related magnesium–phenanthroline complexes, see: Zhu et al. (2008[Zhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.]); Hao et al. (2008[Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.]); Zhang (2004[Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1415.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2

  • Mr = 997.16

  • Monoclinic, C 2/c

  • a = 16.761 (3) Å

  • b = 22.172 (4) Å

  • c = 13.996 (3) Å

  • β = 123.49 (3)°

  • V = 4338 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.826, Tmax = 0.878

  • 16762 measured reflections

  • 3817 independent reflections

  • 3068 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.155

  • S = 1.06

  • 3817 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N3 0.85 2.08 2.876 (4) 156
O1W—H1B⋯O1 0.85 1.84 2.636 (4) 154

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some magnesium(II)-phenanthroline complexes have been synthesized and reported (Zhu et al., 2008; Hao et al. 2008; Zhang, 2004). As a continuation of these studies, we now report the crystal structure of the title complex (I).

X-ray structure analysis reveals that (I) is an ionic monomeric MgII complex (Fig. 1) with two solvent phen molecules. The Mg(II) ion is surrounded by four N atoms from the two phen ligands and two O atoms from two coordinated water molecules to form distorted MgN4O2 octahedron. The Mg—O(2.018 (2)–2.018 (3) Å) and Mg—N (2.211 (3)–2.215 (2) Å) bond lengths are normal.

In the crystal structure, intermolecular O—H···N and O—H···O hydrogen bonds (Table 1) and ππ interactions between the aromatic rings with the shortest centroid-centroid separation of 3.527 (2) Å, link cation, anion and two solvent 1,10-phenanthroline molecules into a hydrogen-bonded cluster (Fig. 1).

Related literature top

For related magnesium(II)–phenanthroline complexes, see: Zhu et al. (2008); Hao et al. (2008); Zhang (2004).

Experimental top

Magnesium chloride, potassium dichromate and 1,10-phenanthroline (molar ratio 1:1:4) were dissolved in water-ethanol mixture (1:1 v/v, 50 ml) and refluxed for 3 h. The resulting solution was allowed to stand at room temperature for a week and yellow crystals of (I) were obtained.

Refinement top

C-bound H atoms were geometrically positioned [O—H = 0.93 Å], while water H atoms were located in a Fourier difference map, but placed in idealized positions [O—H = 0.85 Å]. All H atoms were refined as riding, with Uiso(H) =1.2Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The hydrogen-bonded (dashed lines) cluster in (I) showing the atomic numbering and 30% probability displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry [-x + 1, y, 1/2 - z]. H atoms not involved in hydrogen-bonding are omitted for clarity.
Diaquabis(1,10-phenanthroline)magnesium(II) dichromate(VI) 1,10-phenanthroline disolvate top
Crystal data top
[Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2F(000) = 2048
Mr = 997.16Dx = 1.527 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2800 reflections
a = 16.761 (3) Åθ = 5.0–22.8°
b = 22.172 (4) ŵ = 0.59 mm1
c = 13.996 (3) ÅT = 293 K
β = 123.49 (3)°Prism, yellow
V = 4338 (2) Å30.30 × 0.28 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3817 independent reflections
Radiation source: fine-focus sealed tube3068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.826, Tmax = 0.878k = 2626
16762 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0878P)2 + 5.6611P]
where P = (Fo2 + 2Fc2)/3
3817 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2V = 4338 (2) Å3
Mr = 997.16Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.761 (3) ŵ = 0.59 mm1
b = 22.172 (4) ÅT = 293 K
c = 13.996 (3) Å0.30 × 0.28 × 0.21 mm
β = 123.49 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3817 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3068 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.878Rint = 0.020
16762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.06Δρmax = 0.87 e Å3
3817 reflectionsΔρmin = 0.46 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.50000.0547 (2)0.25000.135 (2)
Mg10.50000.32609 (6)0.25000.0429 (3)
C120.42272 (18)0.41277 (11)0.3486 (2)0.0341 (6)
C40.36810 (18)0.45551 (13)0.3620 (2)0.0387 (6)
N10.40575 (15)0.39775 (10)0.24512 (19)0.0374 (5)
N20.55208 (16)0.34161 (11)0.4315 (2)0.0427 (6)
C70.5222 (2)0.39865 (14)0.5573 (2)0.0431 (7)
C110.50124 (18)0.38299 (12)0.4484 (2)0.0367 (6)
O1W0.60296 (19)0.26585 (11)0.2850 (2)0.0743 (8)
C50.3893 (2)0.46843 (14)0.4739 (3)0.0479 (7)
H50.35150.49570.48260.057*
C20.2783 (2)0.46981 (15)0.1593 (3)0.0503 (7)
H20.23030.48900.09300.060*
C30.2941 (2)0.48458 (14)0.2624 (3)0.0471 (7)
H30.25650.51360.26740.057*
C60.4639 (2)0.44126 (15)0.5673 (3)0.0509 (8)
H60.47720.45070.63950.061*
C100.6264 (2)0.31578 (16)0.5247 (3)0.0557 (8)
H100.66160.28710.51450.067*
C10.3345 (2)0.42583 (14)0.1536 (3)0.0469 (7)
H10.32170.41550.08200.056*
C90.6539 (2)0.32924 (18)0.6350 (3)0.0637 (10)
H90.70680.31040.69710.076*
C80.6026 (2)0.37051 (17)0.6519 (3)0.0575 (9)
H80.62050.38010.72600.069*
H1B0.59620.22780.28510.086*
H1A0.63690.26860.25720.086*
C240.7163 (2)0.30719 (14)0.1147 (3)0.0448 (7)
C160.7005 (2)0.32042 (15)0.0067 (3)0.0496 (7)
C230.7918 (2)0.33854 (14)0.2156 (3)0.0467 (7)
C190.8456 (2)0.38268 (16)0.2027 (3)0.0513 (8)
N30.66308 (19)0.26634 (13)0.1282 (2)0.0533 (7)
N40.8060 (2)0.32422 (14)0.3182 (2)0.0577 (7)
C180.8266 (2)0.39479 (17)0.0912 (3)0.0585 (9)
H180.86210.42410.08300.070*
C170.7583 (2)0.36451 (18)0.0013 (3)0.0590 (9)
H170.74860.37250.07220.071*
C130.5949 (3)0.23787 (17)0.0359 (3)0.0611 (9)
H130.55840.20970.04480.073*
C140.5743 (3)0.24734 (17)0.0736 (3)0.0641 (9)
H140.52520.22620.13580.077*
C200.9162 (2)0.41347 (18)0.3012 (3)0.0642 (10)
H200.95270.44340.29630.077*
C150.6273 (2)0.28822 (17)0.0877 (3)0.0601 (9)
H150.61510.29490.16020.072*
C210.9307 (3)0.3991 (2)0.4040 (3)0.0712 (11)
H210.97750.41880.47040.085*
C220.8749 (3)0.35454 (19)0.4088 (3)0.0681 (10)
H220.88630.34520.48010.082*
Cr10.60986 (4)0.08803 (3)0.29232 (5)0.0543 (2)
O20.69117 (19)0.04355 (13)0.3843 (2)0.0739 (8)
O30.6203 (3)0.09376 (18)0.1873 (2)0.1033 (11)
O10.6225 (2)0.15268 (13)0.3521 (3)0.0874 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.069 (3)0.058 (3)0.271 (8)0.0000.090 (4)0.000
Mg10.0517 (8)0.0367 (8)0.0523 (8)0.0000.0364 (7)0.000
C120.0324 (13)0.0281 (14)0.0418 (14)0.0044 (10)0.0205 (11)0.0012 (10)
C40.0358 (13)0.0335 (15)0.0485 (16)0.0045 (11)0.0243 (13)0.0040 (11)
N10.0372 (12)0.0352 (13)0.0380 (12)0.0007 (9)0.0196 (10)0.0003 (9)
N20.0403 (12)0.0390 (14)0.0523 (14)0.0048 (10)0.0277 (11)0.0096 (10)
C70.0438 (15)0.0441 (17)0.0387 (14)0.0092 (12)0.0211 (13)0.0024 (12)
C110.0356 (13)0.0338 (14)0.0411 (14)0.0048 (11)0.0214 (12)0.0042 (11)
O1W0.105 (2)0.0451 (14)0.125 (2)0.0226 (13)0.0963 (19)0.0224 (14)
C50.0520 (16)0.0456 (18)0.0575 (18)0.0037 (13)0.0375 (15)0.0070 (14)
C20.0419 (15)0.0481 (18)0.0508 (17)0.0093 (13)0.0192 (14)0.0080 (14)
C30.0395 (14)0.0388 (17)0.0640 (19)0.0052 (12)0.0292 (14)0.0006 (13)
C60.0643 (19)0.0529 (19)0.0462 (16)0.0120 (15)0.0373 (16)0.0081 (14)
C100.0470 (17)0.054 (2)0.064 (2)0.0127 (14)0.0293 (16)0.0199 (15)
C10.0470 (16)0.0472 (18)0.0414 (15)0.0003 (13)0.0213 (14)0.0005 (13)
C90.0467 (17)0.071 (3)0.0535 (19)0.0029 (16)0.0154 (16)0.0253 (17)
C80.0597 (19)0.061 (2)0.0399 (16)0.0079 (16)0.0198 (15)0.0083 (14)
C240.0423 (15)0.0439 (17)0.0507 (16)0.0145 (12)0.0273 (14)0.0063 (13)
C160.0462 (16)0.0527 (19)0.0503 (17)0.0174 (14)0.0268 (14)0.0135 (14)
C230.0446 (16)0.0453 (18)0.0514 (16)0.0152 (13)0.0273 (14)0.0078 (13)
C190.0370 (15)0.055 (2)0.0565 (18)0.0120 (13)0.0227 (14)0.0077 (15)
N30.0573 (15)0.0498 (16)0.0617 (16)0.0011 (12)0.0384 (14)0.0005 (12)
N40.0641 (17)0.0592 (18)0.0527 (15)0.0123 (14)0.0341 (14)0.0042 (13)
C180.0449 (17)0.064 (2)0.068 (2)0.0101 (15)0.0322 (17)0.0191 (17)
C170.0526 (18)0.069 (2)0.0556 (19)0.0134 (16)0.0302 (17)0.0215 (17)
C130.062 (2)0.051 (2)0.075 (2)0.0018 (16)0.0403 (19)0.0026 (17)
C140.060 (2)0.055 (2)0.064 (2)0.0039 (16)0.0255 (18)0.0025 (16)
C200.0405 (17)0.066 (2)0.074 (2)0.0054 (15)0.0244 (17)0.0047 (18)
C150.060 (2)0.062 (2)0.0485 (17)0.0138 (17)0.0241 (16)0.0055 (16)
C210.049 (2)0.079 (3)0.062 (2)0.0107 (18)0.0160 (18)0.0087 (19)
C220.071 (2)0.075 (3)0.055 (2)0.015 (2)0.0322 (19)0.0016 (18)
Cr10.0481 (3)0.0484 (4)0.0652 (4)0.0060 (2)0.0305 (3)0.0057 (2)
O20.0757 (17)0.0743 (19)0.0658 (15)0.0237 (14)0.0353 (14)0.0140 (13)
O30.106 (3)0.132 (3)0.0579 (16)0.020 (2)0.0364 (17)0.0151 (17)
O10.113 (2)0.0484 (16)0.114 (2)0.0003 (15)0.071 (2)0.0028 (15)
Geometric parameters (Å, º) top
O4—Cr11.756 (2)C9—C81.363 (5)
O4—Cr1i1.756 (2)C9—H90.9300
Mg1—O1Wi2.017 (2)C8—H80.9300
Mg1—O1W2.017 (2)C24—N31.355 (4)
Mg1—N22.210 (3)C24—C161.414 (4)
Mg1—N2i2.210 (3)C24—C231.451 (4)
Mg1—N12.215 (2)C16—C151.404 (5)
Mg1—N1i2.215 (2)C16—C171.424 (5)
C12—N11.354 (3)C23—N41.357 (4)
C12—C41.401 (4)C23—C191.408 (5)
C12—C111.446 (4)C19—C201.403 (5)
C4—C31.410 (4)C19—C181.434 (5)
C4—C51.431 (4)N3—C131.321 (4)
N1—C11.329 (4)N4—C221.333 (5)
N2—C101.337 (4)C18—C171.342 (5)
N2—C111.359 (4)C18—H180.9300
C7—C111.406 (4)C17—H170.9300
C7—C81.410 (4)C13—C141.387 (5)
C7—C61.421 (5)C13—H130.9300
O1W—H1B0.8517C14—C151.359 (5)
O1W—H1A0.8491C14—H140.9300
C5—C61.353 (5)C20—C211.358 (6)
C5—H50.9300C20—H200.9300
C2—C31.356 (5)C15—H150.9300
C2—C11.389 (4)C21—C221.387 (6)
C2—H20.9300C21—H210.9300
C3—H30.9300C22—H220.9300
C6—H60.9300Cr1—O31.578 (3)
C10—C91.378 (5)Cr1—O21.597 (3)
C10—H100.9300Cr1—O11.614 (3)
C1—H10.9300
Cr1—O4—Cr1i130.3 (3)N1—C1—H1118.3
O1Wi—Mg1—O1W97.08 (17)C2—C1—H1118.3
O1Wi—Mg1—N297.14 (10)C8—C9—C10119.2 (3)
O1W—Mg1—N294.70 (11)C8—C9—H9120.4
O1Wi—Mg1—N2i94.70 (11)C10—C9—H9120.4
O1W—Mg1—N2i97.14 (10)C9—C8—C7120.1 (3)
N2—Mg1—N2i162.09 (14)C9—C8—H8120.0
O1Wi—Mg1—N188.13 (10)C7—C8—H8120.0
O1W—Mg1—N1169.28 (11)N3—C24—C16122.5 (3)
N2—Mg1—N175.31 (9)N3—C24—C23118.2 (3)
N2i—Mg1—N191.73 (9)C16—C24—C23119.3 (3)
O1Wi—Mg1—N1i169.28 (10)C15—C16—C24116.8 (3)
O1W—Mg1—N1i88.13 (10)C15—C16—C17123.7 (3)
N2—Mg1—N1i91.73 (9)C24—C16—C17119.5 (3)
N2i—Mg1—N1i75.31 (9)N4—C23—C19123.2 (3)
N1—Mg1—N1i88.32 (13)N4—C23—C24117.8 (3)
N1—C12—C4122.9 (2)C19—C23—C24119.0 (3)
N1—C12—C11117.6 (2)C20—C19—C23117.7 (3)
C4—C12—C11119.5 (2)C20—C19—C18122.6 (3)
C12—C4—C3117.3 (3)C23—C19—C18119.7 (3)
C12—C4—C5119.8 (3)C13—N3—C24117.6 (3)
C3—C4—C5122.9 (3)C22—N4—C23116.3 (3)
C1—N1—C12117.6 (2)C17—C18—C19121.0 (3)
C1—N1—Mg1127.7 (2)C17—C18—H18119.5
C12—N1—Mg1114.72 (17)C19—C18—H18119.5
C10—N2—C11117.1 (3)C18—C17—C16121.4 (3)
C10—N2—Mg1128.2 (2)C18—C17—H17119.3
C11—N2—Mg1114.65 (18)C16—C17—H17119.3
C11—C7—C8116.6 (3)N3—C13—C14124.2 (3)
C11—C7—C6119.8 (3)N3—C13—H13117.9
C8—C7—C6123.7 (3)C14—C13—H13117.9
N2—C11—C7123.3 (2)C15—C14—C13118.5 (3)
N2—C11—C12117.7 (2)C15—C14—H14120.7
C7—C11—C12119.0 (3)C13—C14—H14120.7
Mg1—O1W—H1B124.0C21—C20—C19119.2 (4)
Mg1—O1W—H1A122.7C21—C20—H20120.4
H1B—O1W—H1A101.3C19—C20—H20120.4
C6—C5—C4120.5 (3)C14—C15—C16120.3 (3)
C6—C5—H5119.8C14—C15—H15119.9
C4—C5—H5119.8C16—C15—H15119.9
C3—C2—C1119.4 (3)C20—C21—C22119.2 (4)
C3—C2—H2120.3C20—C21—H21120.4
C1—C2—H2120.3C22—C21—H21120.4
C2—C3—C4119.4 (3)N4—C22—C21124.4 (4)
C2—C3—H3120.3N4—C22—H22117.8
C4—C3—H3120.3C21—C22—H22117.8
C5—C6—C7121.4 (3)O3—Cr1—O2108.43 (17)
C5—C6—H6119.3O3—Cr1—O1111.17 (19)
C7—C6—H6119.3O2—Cr1—O1108.75 (16)
N2—C10—C9123.7 (3)O3—Cr1—O4110.76 (14)
N2—C10—H10118.1O2—Cr1—O4106.38 (17)
C9—C10—H10118.1O1—Cr1—O4111.18 (18)
N1—C1—C2123.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N30.852.082.876 (4)156
O1W—H1B···O10.851.842.636 (4)154

Experimental details

Crystal data
Chemical formula[Mg(C12H8N2)2(H2O)2][Cr2O7]·2C12H8N2
Mr997.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.761 (3), 22.172 (4), 13.996 (3)
β (°) 123.49 (3)
V3)4338 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.30 × 0.28 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.826, 0.878
No. of measured, independent and
observed [I > 2σ(I)] reflections
16762, 3817, 3068
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.155, 1.06
No. of reflections3817
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N30.852.082.876 (4)156
O1W—H1B···O10.851.842.636 (4)154
 

Acknowledgements

The authors thank Weifang University and the Scientific Research Fund of Hebei Provincial Education Department (project No. 2006114) for financial support.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411–1415.  CAS Google Scholar
First citationZhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds