metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­{2-[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetato}manganese(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 15 August 2009; accepted 19 August 2009; online 22 August 2009)

In the title compound, [Mn(C11H8N3O2S)2(H2O)4]·2H2O, the MnII ion lies on an inversion centre and is coordinated by four water mol­ecules in equatorial positions and two N atoms from two 2-[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]acetate ligands in the axial positions. The water mol­ecules, including the uncoordinated water mol­ecules, and the acetate O atoms are involved in O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, which link the components into layers parallel to the a (b + c) plane.

Related literature

For hydro­(solvo)thermal reactions between (heterocyclic­thio)acetic acid and metal ions, see: Zhu et al. (2009[Zhu, H. B., Ji, J. F., Zhang, Y. W. & Gou, S. H. (2009). Inorg. Chem. Commun. 9, 240-242.]); Hao et al. (2008[Hao, Z. M., Fang, R. Q., Wu, H. S. & Zhang, X. M. (2008). Inorg. Chem. 47, 8197-8203.]); He et al. (2007[He, Y. K., Han, Z. B., Ma, Y. & Zhang, X. D. (2007). Inorg. Chem. Commun. 10, 829-832.]). For a Cu(II) coordination compound with 4-(pyridin-4-yl)pyrimidine-2-sulfonate, see Li et al. (2009[Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C11H8N3O2S)2(H2O)4]·2H2O

  • Mr = 655.58

  • Triclinic, [P \overline 1]

  • a = 8.459 (3) Å

  • b = 9.240 (3) Å

  • c = 9.360 (4) Å

  • α = 87.396 (6)°

  • β = 75.862 (5)°

  • γ = 79.872 (5)°

  • V = 698.4 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.920

  • 4518 measured reflections

  • 3181 independent reflections

  • 2443 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 0.98

  • 3181 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯O3i 0.85 1.82 2.655 (2) 168
O1—H2⋯O4 0.85 1.88 2.709 (2) 165
O2—H3⋯O4 0.85 1.97 2.743 (2) 150
O1—H4⋯O5ii 0.85 1.81 2.642 (3) 167
O5—H5⋯N1iii 0.85 2.09 2.888 (3) 155
O5—H6⋯O3 0.85 2.01 2.775 (3) 149
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydro(solvo)thermal reactions of (heterocyclicthio)acetic acid with both transition metal ions and lanthanide ions have been investigated in several reports (Zhu et al., 2009; Hao et al., 2008; He et al., 2007), wherein in situ C—S cleavage has taken place under these situations. Herein, we report a manganese (II) coordination complex with a newly synthesized (heterocyclicthio)acetic acid, namely 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid.

As shown in Fig. 1, the coordination arrangement around Mn(II) center is similar to our previously reported Cu(II) compound with the ligand of 4-(pyridin-4-yl)pyrimidine-2-sulfonate (Li et al., 2009). The Mn(II) center also adopts an octahedral coordination geometry completed by four water O atoms in equatorial positions and two N atoms in apical positions. In the title complex, the MnII atom sits on an inversion centre with the asymmetric unit containing half of the complex and one free water molecule. The Mn—O bond lengths vary from 2.189 (2) to 2.192 (2) Å and the Mn—N bond distance is 2.276 (2) Å. Intra- and intermolecular hydrogen bonding interactions, such as O—H···O and O—H···N are observed in the crystal structure (Table 1).

Related literature top

For hydro(solvo)thermal reactions between (heterocyclicthio)acetic acid and metal ions, see: Zhu et al. (2009); Hao et al. (2008); He et al. (2007). For a Cu(II) coordination compound with 4-(pyridin-4-yl)pyrimidine-2-sulfonate, see Li et al. (2009).

Experimental top

The mixture of Mn(OAc)2 (0.1 mmol), 2-(4-(pyridine-3-yl)pyrimidin-2-ylthio)acetic acid (0.2 mmol) and NaOH (0.2 mmol) in 6 ml of H2O was stirred for 20 min at room temperature. After filtration, the mother liquid was stood for one week to give the colorless crystals suitable for X-raydiffraction analysis.

Refinement top

C-bound H atoms were positioned geometrically (C—H =0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The positions of the water H atoms were found from a difference Fourier map, but placed in idealized positions (O—H = 0.85 Å), and refined as riding with Uiso(H) = 1.2 Ueq(O5).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around Mn(II) in the title complex with the atom-labeling scheme [symmetry code: (A) -x, 2-y, 1-z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Tetraaquabis{2-[4-(3-pyridyl)pyrimidin-2-ylsulfanyl]acetato}manganese(II) dihydrate top
Crystal data top
[Mn(C11H8N3O2S)2(H2O)4]·2H2OZ = 1
Mr = 655.58F(000) = 339
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.459 (3) ÅCell parameters from 3181 reflections
b = 9.240 (3) Åθ = 2.2–28.1°
c = 9.360 (4) ŵ = 0.69 mm1
α = 87.396 (6)°T = 298 K
β = 75.862 (5)°Block, colourless
γ = 79.872 (5)°0.14 × 0.12 × 0.10 mm
V = 698.4 (4) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3181 independent reflections
Radiation source: fine-focus sealed tube2443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.884, Tmax = 0.920k = 612
4518 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Mn(C11H8N3O2S)2(H2O)4]·2H2Oγ = 79.872 (5)°
Mr = 655.58V = 698.4 (4) Å3
Triclinic, P1Z = 1
a = 8.459 (3) ÅMo Kα radiation
b = 9.240 (3) ŵ = 0.69 mm1
c = 9.360 (4) ÅT = 298 K
α = 87.396 (6)°0.14 × 0.12 × 0.10 mm
β = 75.862 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2443 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.920Rint = 0.031
4518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.98Δρmax = 0.49 e Å3
3181 reflectionsΔρmin = 0.55 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00001.00000.50000.02786 (13)
S10.71353 (7)0.62719 (6)0.00440 (6)0.03937 (16)
O10.12141 (17)0.98576 (16)0.26485 (16)0.0383 (4)
O20.24139 (17)1.03191 (17)0.52792 (17)0.0447 (4)
N20.49123 (19)0.56249 (17)0.24128 (18)0.0291 (4)
O40.44775 (17)0.95387 (16)0.25780 (16)0.0412 (4)
N10.6987 (2)0.36606 (19)0.1238 (2)0.0379 (4)
C10.6227 (2)0.5074 (2)0.1385 (2)0.0310 (4)
O30.71010 (18)0.85073 (17)0.23595 (17)0.0455 (4)
C50.2749 (2)0.5349 (2)0.4544 (2)0.0279 (4)
N30.0768 (2)0.75451 (18)0.53326 (19)0.0335 (4)
C110.5782 (2)0.8717 (2)0.1953 (2)0.0302 (4)
C40.4233 (2)0.4687 (2)0.3417 (2)0.0295 (4)
C90.2097 (2)0.6826 (2)0.4396 (2)0.0323 (5)
H9A0.26210.73420.35950.039*
C100.5730 (3)0.7975 (2)0.0536 (2)0.0342 (5)
H10A0.59560.86620.02720.041*
H10B0.46140.77930.06330.041*
C60.1962 (3)0.4588 (2)0.5742 (2)0.0354 (5)
H6A0.23540.36000.58820.042*
C80.0031 (3)0.6779 (2)0.6484 (2)0.0364 (5)
H8A0.08990.72560.71490.044*
C70.0596 (3)0.5315 (2)0.6721 (2)0.0394 (5)
H7A0.00580.48240.75340.047*
C20.6305 (3)0.2757 (2)0.2252 (3)0.0415 (5)
H2C0.67860.17690.22090.050*
C30.4920 (3)0.3206 (2)0.3369 (3)0.0402 (5)
H3A0.44660.25440.40600.048*
O51.0477 (2)0.7838 (2)0.1129 (2)0.0871 (8)
H10.27121.06560.59850.105*
H20.22590.98080.24690.105*
H30.33091.00790.46250.105*
H40.09990.93000.20530.105*
H51.09800.72680.04130.105*
H60.94490.78710.12080.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0239 (2)0.0266 (2)0.0312 (3)0.00261 (17)0.00359 (17)0.00345 (17)
S10.0421 (3)0.0381 (3)0.0316 (3)0.0063 (2)0.0042 (2)0.0080 (2)
O10.0354 (8)0.0416 (9)0.0347 (8)0.0006 (7)0.0053 (6)0.0082 (6)
O20.0289 (8)0.0619 (11)0.0447 (10)0.0092 (7)0.0080 (7)0.0149 (8)
N20.0291 (9)0.0264 (9)0.0310 (9)0.0038 (7)0.0055 (7)0.0033 (7)
O40.0305 (8)0.0442 (9)0.0447 (9)0.0013 (7)0.0023 (7)0.0141 (7)
N10.0360 (10)0.0308 (10)0.0452 (11)0.0008 (8)0.0091 (8)0.0125 (8)
C10.0313 (11)0.0301 (11)0.0339 (12)0.0060 (8)0.0105 (9)0.0066 (8)
O30.0342 (8)0.0558 (10)0.0482 (10)0.0005 (7)0.0147 (7)0.0200 (8)
C50.0274 (10)0.0260 (10)0.0319 (11)0.0056 (8)0.0095 (8)0.0004 (8)
N30.0293 (9)0.0303 (9)0.0371 (10)0.0036 (7)0.0019 (7)0.0008 (7)
C110.0309 (11)0.0293 (11)0.0301 (11)0.0086 (8)0.0039 (8)0.0006 (8)
C40.0304 (10)0.0259 (10)0.0344 (11)0.0039 (8)0.0125 (9)0.0017 (8)
C90.0314 (11)0.0267 (10)0.0361 (12)0.0048 (8)0.0035 (9)0.0027 (8)
C100.0415 (12)0.0325 (11)0.0283 (11)0.0068 (9)0.0075 (9)0.0003 (8)
C60.0428 (12)0.0274 (11)0.0374 (12)0.0076 (9)0.0121 (10)0.0045 (9)
C80.0324 (11)0.0390 (12)0.0342 (12)0.0070 (9)0.0003 (9)0.0015 (9)
C70.0427 (13)0.0403 (13)0.0335 (12)0.0119 (10)0.0036 (10)0.0084 (9)
C20.0462 (13)0.0246 (11)0.0512 (14)0.0041 (10)0.0130 (11)0.0077 (10)
C30.0456 (13)0.0253 (11)0.0470 (14)0.0031 (9)0.0081 (11)0.0008 (9)
O50.0420 (10)0.1175 (19)0.0989 (17)0.0176 (11)0.0041 (11)0.0692 (14)
Geometric parameters (Å, º) top
Mn1—O12.1889 (16)C5—C91.393 (3)
Mn1—O1i2.1889 (16)C5—C41.485 (3)
Mn1—O2i2.1919 (15)N3—C91.335 (2)
Mn1—O22.1919 (15)N3—C81.345 (3)
Mn1—N3i2.2761 (18)C11—C101.534 (3)
Mn1—N32.2761 (18)C4—C31.388 (3)
S1—C11.759 (2)C9—H9A0.9300
S1—C101.800 (2)C10—H10A0.9700
O1—H20.8520C10—H10B0.9700
O1—H40.8477C6—C71.375 (3)
O2—H10.8510C6—H6A0.9300
O2—H30.8511C8—C71.380 (3)
N2—C11.320 (2)C8—H8A0.9300
N2—C41.342 (3)C7—H7A0.9300
O4—C111.252 (2)C2—C31.382 (3)
N1—C21.327 (3)C2—H2C0.9300
N1—C11.347 (2)C3—H3A0.9300
O3—C111.246 (2)O5—H50.8500
C5—C61.386 (3)O5—H60.8501
O1—Mn1—O1i180.000 (1)C8—N3—Mn1123.89 (14)
O1—Mn1—O2i95.09 (6)O3—C11—O4125.43 (18)
O1i—Mn1—O2i84.91 (6)O3—C11—C10118.76 (18)
O1—Mn1—O284.91 (6)O4—C11—C10115.76 (18)
O1i—Mn1—O295.09 (6)N2—C4—C3120.38 (18)
O2i—Mn1—O2180.00 (8)N2—C4—C5115.60 (16)
O1—Mn1—N3i87.81 (6)C3—C4—C5124.02 (18)
O1i—Mn1—N3i92.19 (6)N3—C9—C5124.01 (18)
O2i—Mn1—N3i88.48 (6)N3—C9—H9A118.0
O2—Mn1—N3i91.52 (6)C5—C9—H9A118.0
O1—Mn1—N392.19 (6)C11—C10—S1116.57 (14)
O1i—Mn1—N387.81 (6)C11—C10—H10A108.1
O2i—Mn1—N391.52 (6)S1—C10—H10A108.1
O2—Mn1—N388.48 (6)C11—C10—H10B108.1
N3i—Mn1—N3180.000 (1)S1—C10—H10B108.1
C1—S1—C10101.21 (10)H10A—C10—H10B107.3
Mn1—O1—H2113.5C7—C6—C5119.14 (19)
Mn1—O1—H4123.8C7—C6—H6A120.4
H2—O1—H4108.6C5—C6—H6A120.4
Mn1—O2—H1132.6N3—C8—C7122.84 (19)
Mn1—O2—H3122.8N3—C8—H8A118.6
H1—O2—H3104.6C7—C8—H8A118.6
C1—N2—C4117.31 (17)C6—C7—C8119.36 (19)
C2—N1—C1114.58 (18)C6—C7—H7A120.3
N2—C1—N1127.05 (19)C8—C7—H7A120.3
N2—C1—S1118.41 (15)N1—C2—C3123.44 (19)
N1—C1—S1114.55 (15)N1—C2—H2C118.3
C6—C5—C9117.58 (18)C3—C2—H2C118.3
C6—C5—C4124.11 (18)C2—C3—C4117.2 (2)
C9—C5—C4118.31 (17)C2—C3—H3A121.4
C9—N3—C8117.06 (18)C4—C3—H3A121.4
C9—N3—Mn1118.88 (13)H5—O5—H6106.5
C4—N2—C1—N10.9 (3)C9—C5—C4—C3174.50 (19)
C4—N2—C1—S1179.48 (14)C8—N3—C9—C50.1 (3)
C2—N1—C1—N20.1 (3)Mn1—N3—C9—C5175.57 (15)
C2—N1—C1—S1179.79 (15)C6—C5—C9—N30.1 (3)
C10—S1—C1—N23.72 (17)C4—C5—C9—N3179.86 (18)
C10—S1—C1—N1176.59 (14)O3—C11—C10—S128.1 (3)
O1—Mn1—N3—C924.51 (15)O4—C11—C10—S1154.45 (16)
O1i—Mn1—N3—C9155.49 (15)C1—S1—C10—C1171.70 (17)
O2i—Mn1—N3—C9119.67 (15)C9—C5—C6—C70.2 (3)
O2—Mn1—N3—C960.33 (15)C4—C5—C6—C7179.86 (19)
O1—Mn1—N3—C8160.35 (16)C9—N3—C8—C70.2 (3)
O1i—Mn1—N3—C819.65 (16)Mn1—N3—C8—C7175.02 (15)
O2i—Mn1—N3—C865.20 (17)C5—C6—C7—C80.5 (3)
O2—Mn1—N3—C8114.80 (17)N3—C8—C7—C60.5 (3)
C1—N2—C4—C30.9 (3)C1—N1—C2—C30.6 (3)
C1—N2—C4—C5179.45 (16)N1—C2—C3—C40.5 (3)
C6—C5—C4—N2174.15 (19)N2—C4—C3—C20.3 (3)
C9—C5—C4—N25.9 (3)C5—C4—C3—C2179.9 (2)
C6—C5—C4—C35.5 (3)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3ii0.851.822.655 (2)168
O1—H2···O40.851.882.709 (2)165
O2—H3···O40.851.972.743 (2)150
O1—H4···O5iii0.851.812.642 (3)167
O5—H5···N1iv0.852.092.888 (3)155
O5—H6···O30.852.012.775 (3)149
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C11H8N3O2S)2(H2O)4]·2H2O
Mr655.58
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.459 (3), 9.240 (3), 9.360 (4)
α, β, γ (°)87.396 (6), 75.862 (5), 79.872 (5)
V3)698.4 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
4518, 3181, 2443
Rint0.031
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 0.98
No. of reflections3181
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.851.822.655 (2)168
O1—H2···O40.851.882.709 (2)165
O2—H3···O40.851.972.743 (2)150
O1—H4···O5ii0.851.812.642 (3)167
O5—H5···N1iii0.852.092.888 (3)155
O5—H6···O30.852.012.775 (3)149
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the China Postdoctoral Research Fund (grant No. 20070411010) and the Young Teachers' Starting Fund of Southeast University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, Z. M., Fang, R. Q., Wu, H. S. & Zhang, X. M. (2008). Inorg. Chem. 47, 8197–8203.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, Y. K., Han, Z. B., Ma, Y. & Zhang, X. D. (2007). Inorg. Chem. Commun. 10, 829–832.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. B., Ji, J. F., Zhang, Y. W. & Gou, S. H. (2009). Inorg. Chem. Commun. 9, 240–242.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds