metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1037-m1038

Di­aqua­bis­[4-(di­methyl­amino)benzoato-κO](isonicotinamide-κN1)manganese(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 8 June 2009; accepted 10 July 2009; online 8 August 2009)

The title MnII complex, [Mn(C9H10NO2)2(C6H6N2O)(H2O)2], contains two 4-(dimethylamino)benzoate (DMAB) anions, one isonicotinamide (INA) ligand and two coordinated water mol­ecules. One of the DMAB anions acts as a bidentate ligand, while the other is monodentate. The four O atoms in the equatorial plane around the Mn atom form a highly distorted square-planar arrangement, while the distorted octa­hedral coordination geometry is completed by the N atom of the INA ligand and the O atom of the second water mol­ecule in the axial positions. In the crystal structure, strong inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (010). Two weak C—H⋯π inter­actions are also found.

Related literature

For general backgroud, see: Adiwidjaja et al. (1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]); Amiraslanov et al. (1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]); Antolini et al. (1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]); Antsyshkina et al. (1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]); Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Catterick et al. (1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]); Chen & Chen (2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]); Hauptmann et al. (2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]); Shnulin et al. (1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]). For related structures, see: Hökelek et al. (2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481-m482.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533-m534.],d[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m545-m546.],e[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m605-m606.],f[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m627-m628.],g[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m651-m652.]); Özbek et al. (2009[Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341-m342.]); Tercan et al. (2009[Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109-m110.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C9H10NO2)2(C6H6N2O)(H2O)2]

  • Mr = 541.46

  • Monoclinic, P 21 /n

  • a = 6.9120 (2) Å

  • b = 45.1365 (5) Å

  • c = 8.1506 (2) Å

  • β = 93.889 (1)°

  • V = 2537.0 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 100 K

  • 0.34 × 0.30 × 0.26 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.860

  • 22933 measured reflections

  • 6311 independent reflections

  • 5980 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.147

  • S = 1.38

  • 6311 reflections

  • 344 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.18 3.025 (4) 167
N2—H2B⋯O3ii 0.86 2.00 2.821 (4) 159
O6—H61⋯O2 0.92 (4) 1.78 (4) 2.672 (4) 162 (4)
O6—H62⋯O5iii 0.89 (4) 1.85 (4) 2.739 (4) 175 (4)
O7—H71⋯N3iv 0.91 (2) 1.96 (2) 2.838 (2) 161 (2)
O7—H72⋯O2v 0.88 (2) 1.80 (2) 2.671 (2) 170 (2)
C23—H23BCg2vi 0.96 2.90 3.649 (4) 136
C24—H24ACg3vii 0.96 2.74 3.594 (3) 149
Symmetry codes: (i) x-1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z-1; (iv) x-1, y, z-1; (v) x-1, y, z; (vi) -x, -y, -z; (vii) -x, -y, -z+1. Cg2 and Cg3 are centroids of the C9–C14 and N1/C15–C19 rings, respectively.

Table 2
Comparison of the carboxylate bonds (Å) in the title compound with the corresponding values in related compounds

Compound C1—O1 C1—O2 C8—O3 C8—O4
Ia 1.261 (4) 1.267 (4) 1.277 (4) 1.270 (4)
IIb 1.244 (4) 1.270 (4)    
IIIc 1.284 (2) 1.248 (2)    
  1.278 (2) 1.241 (2)    
IVd 1.267 (3) 1.258 (3)    
Ve 1.263 (2) 1.240 (2)    
VIf 1.2611 (17) 1.2396 (19)    
VIIg 1.2616 (17) 1.2435 (18)    
VIIIh 1.2746 (18) 1.2675 (17)    
IXi 1.2682 (17) 1.2628 (17) 1.2743 (18) 1.2716 (18)
Xj 1.265 (3) 1.265 (3) 1.278 (3) 1.271 (3)
Notes: (a) this work; (b) [Co(NA)2(H2O)4](C7H4FO2)2 (Özbek et al., 2009[Özbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341-m342.]); (c) [Zn(NA)2C8H8NO2)2] (Tercan et al., 2009[Tercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109-m110.]); (d) [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.]); (e) [Zn(DENA)2(C7H4BrO2)2(H2O)2] (Hökelek et al., 2009b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481-m482.]); (f) [Mn(DENA)2(C7H4BrO2)2(H2O)2] (Hökelek et al., 2009c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533-m534.]); (g) [Ni(DENA)2(C7H4(ClO2)2(H2O)2] (Hökelek et al., 2009d[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m545-m546.]); (h) [Ni(NA)2(C8H8NO2)2(H2O)2] (Hökelek et al., 2009e[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m605-m606.]); (i) [Co(NA)2(C9H10NO2)2(H2O)2] (Hökelek et al., 2009f[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m627-m628.]); (j) [Zn(NA)2((C9H10NO2)2(H2O)2] (Hökelek et al., 2009g[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m651-m652.]).

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).

The structure-function-coordination relationships of the arylcarboxylate ion in MnII complexes of benzoic acid derivatives may also change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis, as in ZnII complexes (Shnulin et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).

The structure determination of the title compound, (I), a manganese complex with two 4-dimethylaminobenzoate (DMAB) and one isonicotinamide (INA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

In the monomeric title complex, (I), the Mn atom is surrounded by two DMAB and INA ligands and two water molecules. One of the DMAB ions acts as a bidentate ligand, while the other and INA are monodentate ligands (Fig. 1). The four O atoms (O1, O3, O4 and O6 atoms) in the equatorial plane around the Mn atom form a highly distorted square-planar arrangement, while the distorted octahedral coordination is completed by the N atom of the INA ligand (N1) and the O atom of the water molecule (O6) in the axial positions (Fig. 1).

The near equality of the C1—O1 [1.261 (4) Å], C1—O2 [1.267 (4) Å], C8—O3 [1.277 (4) Å] and C8—O4 [1.270 (4) Å], bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances (Table 1). In (I), the average Mn—O bond length is 2.196 (2) Å and the Mn atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C8/O4) by 0.525 (1) Å and 0.020 (1) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 5.97 (2)° and 2.32 (2)°, respectively, while those between rings A, B and C (N1/C15—C19) are A/B = 65.38 (3), A/C = 10.20 (3) and B/C = 73.72 (3) °. Intramolecular O—H···O hydrogen bond (Table 2) results in the formation of a six-membered ring D (Mn1/O1/O2/O6/C1/H61) adopting twisted conformation.

In the crystal structure, strong intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network, in which they may be effective in the stabilization of the structure. Two weak C—H···π interactions (Table 2) are also found.

Related literature top

For general backgroud, see: Adiwidjaja et al. (1978); Amiraslanov et al. (1979); Antolini et al. (1982); Antsyshkina et al. (1980); Bigoli et al. (1972); Catterick et al. (1974); Chen & Chen (2002); Hauptmann et al. (2000); Krishnamachari (1974); Shnulin et al. (1981). For related structures, see: Hökelek et al. (2009a,b,c,d,e,f,g); Özbek et al. (2009); Tercan et al. (2009). Cg2 and Cg3 are centroids of the C9–C14 and N1/C15–C19 rings, respectively.

Experimental top

The title compound was prepared by the reaction of MnSO4.H2O (0.85 g, 5 mmol) in H2O (30 ml) and INA (1.22 g, 10 mmol) in H2O (20 ml) with sodium p-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

H atoms of water molecules were located in difference Fourier maps and refined isotropically, with restrains of O6—H61 = 0.92 (4), O6—H62 = 0.89 (4), O7—H71 = 0.909 (17), O7—H72 = 0.876 (19) Å and H61—O6—H62 = 107 (3) and H71—O7—H72 = 107 (3) °. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2) and C—H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Diaquabis[4-(dimethylamino)benzoato-κO](isonicotinamide- κN1)manganese(II) top
Crystal data top
[Mn(C9H10NO2)2(C6H6N2O)(H2O)2]F(000) = 1132
Mr = 541.46Dx = 1.418 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9856 reflections
a = 6.9120 (2) Åθ = 2.6–28.4°
b = 45.1365 (5) ŵ = 0.57 mm1
c = 8.1506 (2) ÅT = 100 K
β = 93.889 (1)°Block, colorless
V = 2537.0 (1) Å30.34 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6311 independent reflections
Radiation source: fine-focus sealed tube5980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 98
Tmin = 0.822, Tmax = 0.860k = 6059
22933 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.38 w = 1/[σ2(Fo2) + (0.P)2 + 9.0299P]
where P = (Fo2 + 2Fc2)/3
6311 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.50 e Å3
6 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Mn(C9H10NO2)2(C6H6N2O)(H2O)2]V = 2537.0 (1) Å3
Mr = 541.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9120 (2) ŵ = 0.57 mm1
b = 45.1365 (5) ÅT = 100 K
c = 8.1506 (2) Å0.34 × 0.30 × 0.26 mm
β = 93.889 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6311 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5980 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.860Rint = 0.025
22933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0746 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.38Δρmax = 0.50 e Å3
6311 reflectionsΔρmin = 1.15 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.89626 (8)0.138233 (11)0.52423 (6)0.01186 (12)
O11.0707 (4)0.16630 (6)0.6803 (3)0.0163 (5)
O21.3091 (4)0.17803 (6)0.5212 (3)0.0168 (5)
O30.7933 (3)0.09672 (5)0.4009 (3)0.0154 (5)
O41.0942 (4)0.09799 (5)0.5074 (3)0.0145 (5)
O50.1617 (4)0.11645 (6)1.0883 (3)0.0179 (5)
O61.0332 (4)0.15667 (6)0.3078 (3)0.0154 (5)
H611.137 (5)0.1657 (10)0.363 (5)0.034 (14)*
H621.081 (7)0.1434 (9)0.240 (5)0.042 (15)*
O70.6603 (4)0.16490 (6)0.4240 (3)0.0184 (5)
H710.694 (6)0.1821 (6)0.375 (5)0.029 (13)*
H720.541 (3)0.1671 (9)0.452 (5)0.024*
N10.7162 (4)0.12666 (6)0.7352 (3)0.0132 (6)
N20.4078 (5)0.10213 (7)1.2669 (4)0.0176 (6)
H2A0.33220.09961.34530.021*
H2B0.53010.09881.28340.021*
N31.6781 (4)0.21772 (6)1.2368 (4)0.0145 (6)
N41.0784 (6)0.03194 (8)0.1892 (5)0.0333 (9)
C11.2368 (5)0.17669 (7)0.6597 (4)0.0129 (6)
C21.3526 (5)0.18809 (7)0.8083 (4)0.0126 (6)
C31.2728 (5)0.18913 (8)0.9603 (4)0.0148 (6)
H31.14590.18270.96870.018*
C41.3773 (5)0.19945 (8)1.0992 (4)0.0158 (7)
H41.31920.20031.19870.019*
C51.5709 (5)0.20875 (7)1.0916 (4)0.0125 (6)
C61.6523 (5)0.20724 (8)0.9390 (4)0.0153 (7)
H61.78040.21300.93070.018*
C71.5446 (5)0.19722 (8)0.8003 (4)0.0158 (7)
H71.60140.19660.70010.019*
C80.9572 (5)0.08403 (7)0.4297 (4)0.0131 (6)
C90.9864 (5)0.05360 (8)0.3708 (4)0.0158 (7)
C101.1647 (6)0.03925 (8)0.4017 (5)0.0199 (7)
H101.26470.04890.46230.024*
C111.1946 (6)0.01099 (9)0.3434 (5)0.0245 (8)
H111.31430.00190.36570.029*
C121.0473 (7)0.00428 (8)0.2511 (5)0.0243 (8)
C130.8674 (6)0.01007 (9)0.2229 (5)0.0248 (8)
H130.76640.00040.16390.030*
C140.8381 (6)0.03848 (8)0.2817 (5)0.0203 (7)
H140.71800.04750.26130.024*
C150.7809 (5)0.13009 (8)0.8924 (4)0.0161 (7)
H150.90750.13660.91530.019*
C160.6671 (5)0.12440 (8)1.0228 (4)0.0157 (7)
H160.71810.12641.13080.019*
C170.4757 (5)0.11571 (7)0.9890 (4)0.0129 (6)
C180.4073 (5)0.11246 (7)0.8254 (4)0.0130 (6)
H180.27970.10680.79880.016*
C190.5315 (5)0.11775 (8)0.7038 (4)0.0149 (6)
H190.48580.11500.59490.018*
C200.3358 (5)0.11123 (7)1.1209 (4)0.0126 (6)
C211.5745 (6)0.23707 (9)1.3459 (5)0.0230 (8)
H21A1.65690.24151.44240.034*
H21B1.45950.22721.37720.034*
H21C1.53950.25521.28950.034*
C221.8760 (6)0.22797 (9)1.2178 (5)0.0223 (8)
H22A1.93770.23241.32390.033*
H22B1.87250.24551.15060.033*
H22C1.94760.21271.16630.033*
C230.9198 (8)0.04870 (10)0.1085 (6)0.0397 (12)
H23A0.96720.06750.07320.060*
H23B0.86610.03790.01480.060*
H23C0.82110.05190.18410.060*
C241.2663 (8)0.04584 (10)0.2133 (7)0.0429 (13)
H24A1.26380.06470.15830.064*
H24B1.29760.04870.32880.064*
H24C1.36250.03340.16900.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0110 (2)0.0148 (2)0.0100 (2)0.0003 (2)0.00228 (17)0.00047 (19)
O10.0136 (12)0.0213 (12)0.0145 (12)0.0047 (10)0.0052 (9)0.0037 (9)
O20.0117 (12)0.0261 (13)0.0127 (12)0.0010 (10)0.0017 (9)0.0015 (10)
O30.0111 (11)0.0195 (12)0.0155 (12)0.0009 (9)0.0003 (9)0.0026 (9)
O40.0144 (12)0.0184 (12)0.0106 (11)0.0001 (9)0.0008 (9)0.0019 (9)
O50.0137 (12)0.0263 (13)0.0136 (12)0.0016 (10)0.0012 (9)0.0031 (10)
O60.0128 (12)0.0203 (12)0.0135 (12)0.0005 (10)0.0047 (9)0.0006 (9)
O70.0131 (12)0.0230 (13)0.0197 (13)0.0048 (10)0.0065 (10)0.0062 (10)
N10.0142 (14)0.0126 (13)0.0130 (13)0.0003 (11)0.0024 (11)0.0011 (10)
N20.0147 (14)0.0267 (16)0.0117 (14)0.0015 (12)0.0022 (11)0.0012 (11)
N30.0144 (14)0.0161 (14)0.0132 (13)0.0027 (11)0.0021 (11)0.0017 (11)
N40.051 (2)0.0158 (16)0.034 (2)0.0016 (16)0.0109 (18)0.0041 (14)
C10.0110 (15)0.0138 (15)0.0140 (15)0.0012 (12)0.0013 (12)0.0011 (12)
C20.0154 (16)0.0112 (14)0.0112 (15)0.0013 (12)0.0007 (12)0.0003 (11)
C30.0125 (16)0.0163 (16)0.0158 (16)0.0007 (13)0.0038 (12)0.0003 (12)
C40.0183 (17)0.0173 (16)0.0121 (16)0.0019 (13)0.0040 (13)0.0010 (12)
C50.0144 (16)0.0108 (14)0.0122 (15)0.0017 (12)0.0005 (12)0.0005 (11)
C60.0152 (16)0.0174 (16)0.0134 (16)0.0010 (13)0.0021 (13)0.0003 (12)
C70.0143 (16)0.0191 (16)0.0145 (16)0.0007 (13)0.0043 (13)0.0004 (12)
C80.0148 (16)0.0142 (15)0.0108 (15)0.0007 (12)0.0044 (12)0.0021 (12)
C90.0189 (17)0.0140 (15)0.0150 (16)0.0003 (13)0.0036 (13)0.0007 (12)
C100.0214 (19)0.0175 (17)0.0210 (18)0.0015 (14)0.0036 (14)0.0010 (14)
C110.026 (2)0.0191 (18)0.029 (2)0.0068 (15)0.0057 (16)0.0030 (15)
C120.039 (2)0.0161 (17)0.0192 (18)0.0007 (16)0.0100 (16)0.0006 (14)
C130.032 (2)0.0189 (18)0.024 (2)0.0049 (16)0.0060 (16)0.0034 (15)
C140.0223 (19)0.0186 (17)0.0205 (18)0.0003 (14)0.0046 (14)0.0028 (14)
C150.0104 (15)0.0208 (17)0.0170 (16)0.0004 (13)0.0005 (12)0.0011 (13)
C160.0171 (17)0.0181 (16)0.0115 (15)0.0005 (13)0.0018 (12)0.0011 (12)
C170.0166 (16)0.0108 (14)0.0118 (15)0.0012 (12)0.0046 (12)0.0001 (11)
C180.0117 (15)0.0137 (15)0.0136 (15)0.0022 (12)0.0002 (12)0.0010 (12)
C190.0166 (17)0.0165 (16)0.0113 (15)0.0000 (13)0.0002 (12)0.0012 (12)
C200.0140 (16)0.0149 (15)0.0091 (14)0.0016 (12)0.0020 (12)0.0025 (11)
C210.025 (2)0.0225 (19)0.0216 (19)0.0009 (15)0.0046 (15)0.0104 (14)
C220.0181 (18)0.030 (2)0.0183 (18)0.0063 (15)0.0007 (14)0.0033 (15)
C230.059 (3)0.018 (2)0.044 (3)0.010 (2)0.020 (2)0.0083 (18)
C240.062 (4)0.020 (2)0.048 (3)0.012 (2)0.018 (3)0.0008 (19)
Geometric parameters (Å, º) top
Mn1—O12.114 (2)C7—C21.395 (5)
Mn1—O32.221 (2)C7—H70.9300
Mn1—O42.284 (2)C8—C91.473 (5)
Mn1—O62.219 (2)C9—C101.400 (5)
Mn1—O72.144 (3)C10—H100.9300
Mn1—N12.252 (3)C11—C101.381 (5)
Mn1—C82.608 (3)C11—C121.405 (6)
O1—C11.261 (4)C11—H110.9300
O2—C11.267 (4)C13—C121.408 (6)
O3—C81.277 (4)C13—H130.9300
O4—C81.270 (4)C14—C91.394 (5)
O5—C201.238 (4)C14—C131.388 (5)
O6—H610.92 (4)C14—H140.9300
O6—H620.89 (4)C15—C161.388 (5)
O7—H710.909 (17)C15—H150.9300
O7—H720.876 (19)C16—H160.9300
N1—C151.337 (4)C17—C161.389 (5)
N2—C201.324 (4)C17—C181.392 (5)
N2—H2A0.8600C17—C201.507 (5)
N2—H2B0.8600C18—H180.9300
N3—C51.412 (4)C19—N11.346 (4)
N3—C211.467 (5)C19—C181.376 (5)
N3—C221.462 (5)C19—H190.9300
N4—C121.369 (5)C21—H21A0.9600
N4—C231.453 (6)C21—H21B0.9600
N4—C241.444 (7)C21—H21C0.9600
C1—C21.497 (5)C22—H22A0.9600
C3—C21.391 (5)C22—H22B0.9600
C3—C41.382 (5)C22—H22C0.9600
C3—H30.9300C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C5—C41.407 (5)C23—H23C0.9600
C5—C61.401 (5)C24—H24A0.9600
C6—C71.387 (5)C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
O1—Mn1—O3158.49 (10)O4—C8—O3119.4 (3)
O1—Mn1—O4101.13 (9)O4—C8—C9120.7 (3)
O1—Mn1—O689.82 (10)O4—C8—Mn161.14 (17)
O1—Mn1—O7106.33 (11)C9—C8—Mn1177.8 (3)
O1—Mn1—N190.10 (10)C10—C9—C8120.8 (3)
O1—Mn1—C8130.01 (11)C14—C9—C8120.9 (3)
O3—Mn1—O458.45 (9)C14—C9—C10118.3 (3)
O3—Mn1—N188.47 (10)C9—C10—H10119.5
O3—Mn1—C829.30 (10)C11—C10—C9121.1 (4)
O4—Mn1—C829.15 (10)C11—C10—H10119.5
O6—Mn1—O395.59 (9)C10—C11—C12121.2 (4)
O6—Mn1—O487.77 (9)C10—C11—H11119.4
O6—Mn1—N1168.98 (10)C12—C11—H11119.4
O6—Mn1—C891.77 (10)N4—C12—C11121.2 (4)
O7—Mn1—O395.10 (10)N4—C12—C13121.2 (4)
O7—Mn1—O4150.12 (10)C11—C12—C13117.5 (3)
O7—Mn1—O680.84 (9)C12—C13—H13119.5
O7—Mn1—N188.61 (10)C14—C13—C12121.1 (4)
O7—Mn1—C8123.23 (11)C14—C13—H13119.5
N1—Mn1—O4103.05 (9)C9—C14—H14119.6
N1—Mn1—C896.71 (10)C13—C14—C9120.9 (4)
C1—O1—Mn1129.0 (2)C13—C14—H14119.6
C8—O3—Mn192.4 (2)N1—C15—C16122.8 (3)
C8—O4—Mn189.7 (2)N1—C15—H15118.6
Mn1—O6—H6198 (3)C16—C15—H15118.6
Mn1—O6—H62116 (3)C15—C16—C17118.8 (3)
H61—O6—H62107 (3)C15—C16—H16120.6
Mn1—O7—H71116 (3)C17—C16—H16120.6
Mn1—O7—H72132 (3)C16—C17—C18118.4 (3)
H71—O7—H72107 (3)C16—C17—C20123.0 (3)
C15—N1—Mn1122.6 (2)C18—C17—C20118.4 (3)
C15—N1—C19117.9 (3)C17—C18—H18120.5
C19—N1—Mn1119.4 (2)C19—C18—C17118.9 (3)
C20—N2—H2A120.0C19—C18—H18120.5
C20—N2—H2B120.0N1—C19—C18123.0 (3)
H2A—N2—H2B120.0N1—C19—H19118.5
C5—N3—C21115.4 (3)C18—C19—H19118.5
C5—N3—C22116.3 (3)O5—C20—N2123.6 (3)
C22—N3—C21112.0 (3)O5—C20—C17118.9 (3)
C12—N4—C23120.6 (4)N2—C20—C17117.6 (3)
C12—N4—C24120.6 (4)N3—C21—H21A109.5
C24—N4—C23118.7 (4)N3—C21—H21B109.5
O1—C1—O2123.6 (3)N3—C21—H21C109.5
O1—C1—C2117.5 (3)H21A—C21—H21B109.5
O2—C1—C2118.9 (3)H21A—C21—H21C109.5
C3—C2—C1120.6 (3)H21B—C21—H21C109.5
C3—C2—C7117.9 (3)N3—C22—H22A109.5
C7—C2—C1121.5 (3)N3—C22—H22B109.5
C2—C3—H3119.2N3—C22—H22C109.5
C4—C3—C2121.6 (3)H22A—C22—H22B109.5
C4—C3—H3119.2H22A—C22—H22C109.5
C3—C4—C5120.7 (3)H22B—C22—H22C109.5
C3—C4—H4119.7N4—C23—H23A109.5
C5—C4—H4119.7N4—C23—H23B109.5
C4—C5—N3119.7 (3)N4—C23—H23C109.5
C6—C5—C4117.7 (3)H23A—C23—H23B109.5
C6—C5—N3122.6 (3)H23A—C23—H23C109.5
C5—C6—H6119.5H23B—C23—H23C109.5
C7—C6—C5120.9 (3)N4—C24—H24A109.5
C7—C6—H6119.5N4—C24—H24B109.5
C2—C7—H7119.4N4—C24—H24C109.5
C6—C7—C2121.2 (3)H24A—C24—H24B109.5
C6—C7—H7119.4H24A—C24—H24C109.5
O3—C8—C9119.8 (3)H24B—C24—H24C109.5
O3—C8—Mn158.31 (17)
O3—Mn1—O1—C176.6 (4)C21—N3—C5—C6139.4 (3)
O4—Mn1—O1—C159.4 (3)C22—N3—C5—C4178.1 (3)
O6—Mn1—O1—C128.3 (3)C22—N3—C5—C65.3 (5)
O7—Mn1—O1—C1108.7 (3)C23—N4—C12—C11173.7 (4)
N1—Mn1—O1—C1162.7 (3)C23—N4—C12—C137.1 (6)
C8—Mn1—O1—C163.9 (3)C24—N4—C12—C111.9 (6)
O1—Mn1—O3—C820.3 (4)C24—N4—C12—C13177.3 (4)
O4—Mn1—O3—C80.29 (18)O1—C1—C2—C34.8 (5)
O6—Mn1—O3—C883.6 (2)O1—C1—C2—C7173.5 (3)
O7—Mn1—O3—C8164.89 (19)O2—C1—C2—C3175.0 (3)
N1—Mn1—O3—C8106.6 (2)O2—C1—C2—C76.7 (5)
O1—Mn1—O4—C8172.96 (19)C4—C3—C2—C1179.7 (3)
O3—Mn1—O4—C80.29 (18)C4—C3—C2—C71.4 (5)
O6—Mn1—O4—C897.66 (19)C2—C3—C4—C51.3 (5)
O7—Mn1—O4—C830.5 (3)N3—C5—C4—C3176.6 (3)
N1—Mn1—O4—C880.2 (2)C6—C5—C4—C30.2 (5)
O1—Mn1—N1—C1520.9 (3)N3—C5—C6—C7177.4 (3)
O1—Mn1—N1—C19154.6 (3)C4—C5—C6—C70.7 (5)
O3—Mn1—N1—C15137.6 (3)C5—C6—C7—C20.6 (5)
O3—Mn1—N1—C1946.9 (3)C6—C7—C2—C1178.8 (3)
O4—Mn1—N1—C1580.5 (3)C6—C7—C2—C30.5 (5)
O4—Mn1—N1—C19103.9 (3)O3—C8—C9—C10179.8 (3)
O6—Mn1—N1—C15110.5 (5)O3—C8—C9—C140.9 (5)
O6—Mn1—N1—C1965.1 (6)O4—C8—C9—C101.1 (5)
O7—Mn1—N1—C15127.3 (3)O4—C8—C9—C14178.3 (3)
O7—Mn1—N1—C1948.3 (3)C8—C9—C10—C11178.4 (3)
C8—Mn1—N1—C15109.4 (3)C14—C9—C10—C110.9 (5)
C8—Mn1—N1—C1975.0 (3)C12—C11—C10—C90.1 (6)
O1—Mn1—C8—O3170.45 (17)C10—C11—C12—N4178.1 (4)
O1—Mn1—C8—O49.0 (2)C10—C11—C12—C131.1 (6)
O3—Mn1—C8—O4179.5 (3)C14—C13—C12—N4178.1 (4)
O4—Mn1—C8—O3179.5 (3)C14—C13—C12—C111.2 (6)
O6—Mn1—C8—O398.29 (19)C9—C14—C13—C120.1 (6)
O6—Mn1—C8—O482.22 (19)C13—C14—C9—C8178.4 (3)
O7—Mn1—C8—O318.1 (2)C13—C14—C9—C100.9 (5)
O7—Mn1—C8—O4162.42 (17)N1—C15—C16—C172.2 (5)
N1—Mn1—C8—O374.7 (2)C18—C17—C16—C151.3 (5)
N1—Mn1—C8—O4104.83 (19)C20—C17—C16—C15175.3 (3)
Mn1—O1—C1—O218.6 (5)C16—C17—C18—C190.5 (5)
Mn1—O1—C1—C2161.6 (2)C20—C17—C18—C19177.2 (3)
Mn1—O3—C8—O40.5 (3)C16—C17—C20—O5148.3 (3)
Mn1—O3—C8—C9178.7 (3)C16—C17—C20—N231.0 (5)
Mn1—O4—C8—O30.5 (3)C18—C17—C20—O528.3 (5)
Mn1—O4—C8—C9178.7 (3)C18—C17—C20—N2152.4 (3)
Mn1—N1—C15—C16176.7 (3)C18—C19—N1—Mn1174.9 (3)
C19—N1—C15—C161.1 (5)C18—C19—N1—C150.9 (5)
C21—N3—C5—C443.9 (4)N1—C19—C18—C171.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.183.025 (4)167
N2—H2B···O3ii0.862.002.821 (4)159
O6—H61···O20.92 (4)1.78 (4)2.672 (4)162 (4)
O6—H62···O5iii0.89 (4)1.85 (4)2.739 (4)175 (4)
O7—H71···N3iv0.91 (2)1.96 (2)2.838 (2)161 (2)
O7—H72···O2v0.88 (2)1.80 (2)2.671 (2)170 (2)
C23—H23B···Cg2vi0.962.903.649 (4)136
C24—H24A···Cg3vii0.962.743.594 (3)149
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z1; (iv) x1, y, z1; (v) x1, y, z; (vi) x, y, z; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C9H10NO2)2(C6H6N2O)(H2O)2]
Mr541.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.9120 (2), 45.1365 (5), 8.1506 (2)
β (°) 93.889 (1)
V3)2537.0 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.34 × 0.30 × 0.26
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.822, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
22933, 6311, 5980
Rint0.025
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.147, 1.38
No. of reflections6311
No. of parameters344
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 1.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.183.025 (4)167
N2—H2B···O3ii0.862.002.821 (4)159
O6—H61···O20.92 (4)1.78 (4)2.672 (4)162 (4)
O6—H62···O5iii0.89 (4)1.85 (4)2.739 (4)175 (4)
O7—H71···N3iv0.91 (2)1.96 (2)2.838 (2)161 (2)
O7—H72···O2v0.88 (2)1.80 (2)2.671 (2)170 (2)
C23—H23B···Cg2vi0.962.903.649 (4)136
C24—H24A···Cg3vii0.962.743.594 (3)149
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z1; (iv) x1, y, z1; (v) x1, y, z; (vi) x, y, z; (vii) x, y, z+1.
Comparison of the carboxylate bonds (Å) in the title compound with the corresponding values in related compounds top
CompoundC1—O1C1—O2C8—O3C8—O4
Ia1.261 (4)1.267 (4)1.277 (4)1.270 (4)
IIb1.244 (4)1.270 (4)
IIIc1.284 (2)1.248 (2)
1.278 (2)1.241 (2)
IVd1.267 (3)1.258 (3)
Ve1.263 (2)1.240 (2)
VIf1.2611 (17)1.2396 (19)
VIIg1.2616 (17)1.2435 (18)
VIIIh1.2746 (18)1.2675 (17)
IXi1.2682 (17)1.2628 (17)1.2743 (18)1.2716 (18)
Xj1.265 (3)1.265 (3)1.278 (3)1.271 (3)
Notes: (a) this work; (b) [Co(NA)2(H2O)4](C7H4FO2)2 (Özbek et al., 2009); (c) [Zn(NA)2(C8H8NO2)2] (Tercan et al., 2009); (d) [Ni(NA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009a); (e) [Zn(DENA)2(C7H4BrO2)2(H2O)2] (Hökelek et al., 2009b); (f) [Mn(DENA)2(C7H4BrO2)2(H2O)2] (Hökelek et al., 2009c); (g) [Ni(DENA)2(C7H4ClO2)2(H2O)2] (Hökelek et al., 2009d); (h) [Ni(NA)2(C8H8NO2)2(H2O)2] (Hökelek et al., 2009e); (i) [Co(NA)2(C9H10NO2)2(H2O)2] (Hökelek et al., 2009f); (j) [Zn(NA)2(C9H10NO2)2(H2O)2] (Hökelek et al., 2009g).
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer.

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thorhton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  CrossRef Web of Science Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009e). Acta Cryst. E65, m605–m606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009f). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009g). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m481–m482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m533–m534.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009d). Acta Cryst. E65, m545–m546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationÖzbek, F. E., Tercan, B., Şahin, E., Necefoğlu, H. & Hökelek, T. (2009). Acta Cryst. E65, m341–m342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationTercan, B., Hökelek, T., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m109–m110.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1037-m1038
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds