metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,7,7,12,14,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene)nickel(II) bis­­[O,O′-bis­(4-methyl­phen­yl) di­thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China, and bCollege of Environment and Chemical Engineering, Xi'an Polytechnic University, 710048 Xi'an, Shanxi, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 22 July 2009; accepted 4 August 2009; online 8 August 2009)

In the title compound, [Ni(C16H32N4)](C14H14O2PS2)2 or [Ni(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene, the NiII ion lies across a centre of inversion and is four-coordinated in a relatively undistorted square-planar arrangement by the four N atoms of the macrocyclic ligand trans[14]dien. The two O,O′-di(4-methyl­phen­yl)dithio­phos­phates act as counter-ions to balance the charge. Important geometric data include Ni—N = 1.9135 (16) and 1.9364 (15) Å.

Related literature

For related structures, see: Xie et al. (2008[Xie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H32N4)](C14H14O2PS2)2

  • Mr = 957.85

  • Triclinic, [P \overline 1]

  • a = 8.0044 (6) Å

  • b = 10.0996 (8) Å

  • c = 16.4004 (12) Å

  • α = 80.418 (1)°

  • β = 81.333 (1)°

  • γ = 69.836 (1)°

  • V = 1220.95 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 278 K

  • 0.18 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.888, Tmax = 0.935

  • 6525 measured reflections

  • 4305 independent reflections

  • 3756 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.04

  • 4305 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of an investigation to the potential applications of tetramine macrocyclic transition metal complexs as artificial enzyme models, we have recently reported the structures of [Ni(teta)][S2P(OCH2Ph)2]2, where teta is meso-5,5,7,12,12,14- hexamethyl-1,4,8,11-tetraazacyclotetradecane (Xie et al., 2008). Here we report the structure of [Ni(trans[14]dien)] [S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14- hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

In the title compound, the NiII atom exhibits a relatively undistorted square-planar geometry (Fig.1), which lies on an inversion centre and is coordinated by four N atoms of the macrocyclic ligand trans[14]dien. The two O,O'-di(4-methylphenyl) dithiophosphates only act as counter-ions to balance the charge.All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

Related literature top

For related structures, see: Xie et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

meso-5,7,7,12,14,14-Hexamethyl-1,4,8,1 l-tetraazacyclotetradeca-4, 11-diene nickel(II) perchlorate(2 mmol 1.28 g) was added to a solution of diethylammonium O,O'-di(4-methylphenyl)dithiophosphate (4 mmol 1.534 g) in 60 ml methanol. The mixture was refluxed for 8 h at 353 K and then filtered. The filtrate was kept at room temperature and orange block crystals were obtained after 4 days.

Refinement top

H atoms on C were fixed geometrically and treated as riding, with C—H = 0.97 Å (methylene), 0.96Å (methyl) or 0.93Å (aromatic) and Uiso(H) = 1.2Ueq(C,methylene and aromatic) or Uiso(H) = 1.5Ueq(C,methyl). The H atoms on N were determined with difference Fourier syntheses and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.H atoms have been omitted for the sake of clarity.[Symmetry code: (i) -x + 1, -y + 1, -z + 1].
(meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11- diene)nickel(II) bis[O,O'-bis(4-methylphenyl) dithiophosphate] top
Crystal data top
[Ni(C16H32N4)](C14H14O2PS2)2Z = 1
Mr = 957.85F(000) = 506
Triclinic, P1Dx = 1.303 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0044 (6) ÅCell parameters from 3628 reflections
b = 10.0996 (8) Åθ = 2.4–28.3°
c = 16.4004 (12) ŵ = 0.68 mm1
α = 80.418 (1)°T = 278 K
β = 81.333 (1)°Block, orange
γ = 69.836 (1)°0.18 × 0.14 × 0.10 mm
V = 1220.95 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4305 independent reflections
Radiation source: fine-focus sealed tube3756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 96
Tmin = 0.888, Tmax = 0.935k = 1211
6525 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.4007P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4305 reflectionsΔρmax = 0.50 e Å3
273 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (11)
Crystal data top
[Ni(C16H32N4)](C14H14O2PS2)2γ = 69.836 (1)°
Mr = 957.85V = 1220.95 (16) Å3
Triclinic, P1Z = 1
a = 8.0044 (6) ÅMo Kα radiation
b = 10.0996 (8) ŵ = 0.68 mm1
c = 16.4004 (12) ÅT = 278 K
α = 80.418 (1)°0.18 × 0.14 × 0.10 mm
β = 81.333 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4305 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3756 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.935Rint = 0.012
6525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
4305 reflectionsΔρmin = 0.34 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.03886 (12)
S10.51679 (8)0.93375 (7)0.29986 (4)0.06565 (19)
S20.80706 (8)0.63426 (7)0.38281 (4)0.06475 (18)
P10.74959 (7)0.78569 (6)0.28970 (4)0.05003 (16)
O10.9135 (2)0.84827 (17)0.27241 (10)0.0615 (4)
O20.7837 (2)0.72019 (16)0.20251 (9)0.0582 (4)
N10.3850 (2)0.48109 (17)0.41047 (10)0.0448 (4)
N20.3765 (2)0.70211 (16)0.47728 (11)0.0437 (4)
C10.3764 (3)0.3675 (2)0.38841 (13)0.0507 (5)
C20.2623 (4)0.3675 (3)0.32375 (19)0.0806 (8)
H2A0.13870.41310.34180.121*
H2B0.28030.27130.31570.121*
H2C0.29480.41800.27230.121*
C30.4795 (3)0.2249 (2)0.42779 (15)0.0581 (6)
H3A0.49770.15720.38910.070*
H3B0.40600.19940.47630.070*
C40.2860 (3)0.6213 (2)0.36823 (15)0.0578 (6)
H4A0.18640.61550.34360.069*
H4B0.36400.65420.32470.069*
C50.2199 (3)0.7204 (2)0.43308 (16)0.0586 (6)
H5A0.17230.81780.40760.070*
H5B0.12640.69720.47140.070*
C60.3396 (3)0.7936 (2)0.54526 (14)0.0509 (5)
C70.2575 (4)0.9514 (2)0.51212 (18)0.0716 (7)
H7A0.33550.97680.46650.107*
H7B0.24261.00870.55560.107*
H7C0.14320.96710.49360.107*
C80.2158 (3)0.7501 (2)0.61610 (16)0.0668 (6)
H8A0.09980.77190.59780.100*
H8B0.20550.80100.66210.100*
H8C0.26390.64980.63320.100*
C90.9401 (3)0.9521 (2)0.20917 (14)0.0520 (5)
C101.0778 (3)0.9987 (3)0.21639 (16)0.0643 (6)
H101.14330.96340.26210.077*
C111.1198 (4)1.0978 (3)0.15607 (17)0.0743 (7)
H111.21371.12880.16180.089*
C121.0265 (4)1.1519 (3)0.08774 (16)0.0706 (7)
C130.8887 (4)1.1040 (3)0.08206 (17)0.0816 (8)
H130.82331.13920.03630.098*
C140.8432 (4)1.0046 (3)0.14216 (17)0.0733 (7)
H140.74850.97420.13700.088*
C151.0710 (5)1.2625 (4)0.0212 (2)0.1070 (11)
H15A1.02131.26410.02880.161*
H15B1.19851.23870.01030.161*
H15C1.02131.35440.04020.161*
C160.6734 (3)0.6529 (2)0.18118 (13)0.0562 (5)
C170.7294 (4)0.5084 (3)0.18933 (17)0.0736 (7)
H170.83600.45530.21180.088*
C180.6240 (6)0.4413 (4)0.1634 (2)0.0970 (10)
H180.66170.34260.16900.116*
C190.4665 (6)0.5173 (5)0.13009 (19)0.0973 (11)
C200.4129 (5)0.6620 (4)0.12418 (18)0.0931 (9)
H200.30460.71510.10320.112*
C210.5151 (4)0.7320 (3)0.14848 (16)0.0724 (7)
H210.47740.83080.14280.087*
C220.3564 (7)0.4413 (5)0.1003 (2)0.152 (2)
H22A0.23360.47910.12230.227*
H22B0.40160.34150.11920.227*
H22C0.36440.45550.04070.227*
H10.454 (2)0.725 (2)0.4405 (9)0.050 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03462 (19)0.03290 (18)0.0518 (2)0.01460 (14)0.00187 (14)0.00726 (14)
S10.0497 (3)0.0674 (4)0.0815 (4)0.0103 (3)0.0107 (3)0.0296 (3)
S20.0511 (3)0.0700 (4)0.0695 (4)0.0252 (3)0.0033 (3)0.0047 (3)
P10.0398 (3)0.0550 (3)0.0595 (3)0.0211 (2)0.0010 (2)0.0099 (3)
O10.0508 (9)0.0682 (10)0.0724 (10)0.0338 (8)0.0172 (7)0.0134 (8)
O20.0550 (9)0.0629 (9)0.0610 (9)0.0280 (7)0.0116 (7)0.0162 (7)
N10.0388 (8)0.0465 (9)0.0529 (9)0.0193 (7)0.0021 (7)0.0079 (7)
N20.0369 (8)0.0369 (8)0.0579 (10)0.0161 (7)0.0019 (7)0.0051 (7)
C10.0440 (11)0.0584 (12)0.0579 (12)0.0248 (10)0.0044 (9)0.0209 (10)
C20.0703 (17)0.094 (2)0.093 (2)0.0299 (15)0.0153 (15)0.0417 (16)
C30.0655 (14)0.0489 (12)0.0706 (14)0.0302 (11)0.0049 (11)0.0222 (10)
C40.0523 (12)0.0564 (13)0.0676 (14)0.0197 (10)0.0186 (11)0.0003 (11)
C50.0453 (12)0.0472 (12)0.0810 (16)0.0100 (9)0.0140 (11)0.0058 (11)
C60.0502 (12)0.0365 (10)0.0670 (13)0.0176 (9)0.0088 (10)0.0150 (9)
C70.0739 (16)0.0372 (11)0.0992 (19)0.0154 (11)0.0037 (14)0.0134 (12)
C80.0630 (15)0.0575 (14)0.0740 (16)0.0199 (11)0.0196 (12)0.0154 (12)
C90.0511 (12)0.0509 (12)0.0578 (13)0.0229 (10)0.0060 (10)0.0034 (10)
C100.0540 (13)0.0792 (16)0.0664 (14)0.0344 (12)0.0110 (11)0.0047 (12)
C110.0684 (16)0.0855 (18)0.0819 (18)0.0482 (14)0.0039 (14)0.0006 (14)
C120.0870 (18)0.0644 (15)0.0668 (16)0.0392 (14)0.0014 (14)0.0026 (12)
C130.108 (2)0.0776 (18)0.0716 (17)0.0462 (17)0.0337 (16)0.0127 (14)
C140.0813 (17)0.0724 (16)0.0822 (18)0.0450 (14)0.0304 (14)0.0095 (14)
C150.144 (3)0.106 (2)0.087 (2)0.076 (2)0.005 (2)0.0168 (18)
C160.0642 (14)0.0647 (14)0.0456 (11)0.0305 (12)0.0101 (10)0.0167 (10)
C170.0858 (18)0.0643 (15)0.0735 (17)0.0294 (14)0.0077 (14)0.0201 (13)
C180.142 (3)0.084 (2)0.085 (2)0.062 (2)0.014 (2)0.0307 (17)
C190.133 (3)0.134 (3)0.0614 (17)0.086 (3)0.0001 (18)0.0301 (18)
C200.100 (2)0.132 (3)0.0655 (17)0.053 (2)0.0194 (16)0.0189 (18)
C210.0818 (18)0.0788 (17)0.0612 (15)0.0287 (14)0.0103 (13)0.0133 (13)
C220.223 (5)0.224 (5)0.090 (2)0.169 (5)0.011 (3)0.040 (3)
Geometric parameters (Å, º) top
Ni1—N11.9135 (16)C7—H7C0.9600
Ni1—N1i1.9135 (16)C8—H8A0.9600
Ni1—N2i1.9364 (15)C8—H8B0.9600
Ni1—N21.9364 (15)C8—H8C0.9600
S1—P11.9505 (8)C9—C101.366 (3)
S2—P11.9575 (8)C9—C141.367 (3)
P1—O11.6131 (14)C10—C111.377 (3)
P1—O21.6216 (16)C10—H100.9300
O1—C91.395 (3)C11—C121.371 (4)
O2—C161.396 (3)C11—H110.9300
N1—C11.285 (2)C12—C131.369 (4)
N1—C41.476 (3)C12—C151.522 (4)
N2—C51.483 (3)C13—C141.388 (3)
N2—C61.497 (3)C13—H130.9300
C1—C31.484 (3)C14—H140.9300
C1—C21.500 (3)C15—H15A0.9600
C2—H2A0.9600C15—H15B0.9600
C2—H2B0.9600C15—H15C0.9600
C2—H2C0.9600C16—C171.360 (3)
C3—C6i1.518 (3)C16—C211.377 (4)
C3—H3A0.9700C17—C181.396 (4)
C3—H3B0.9700C17—H170.9300
C4—C51.494 (3)C18—C191.371 (5)
C4—H4A0.9700C18—H180.9300
C4—H4B0.9700C19—C201.365 (5)
C5—H5A0.9700C19—C221.525 (4)
C5—H5B0.9700C20—C211.385 (4)
C6—C3i1.518 (3)C20—H200.9300
C6—C81.519 (3)C21—H210.9300
C6—C71.537 (3)C22—H22A0.9600
C7—H7A0.9600C22—H22B0.9600
C7—H7B0.9600C22—H22C0.9600
N1—Ni1—N1i180.000 (1)H7A—C7—H7B109.5
N1—Ni1—N2i94.15 (7)C6—C7—H7C109.5
N1i—Ni1—N2i85.85 (7)H7A—C7—H7C109.5
N1—Ni1—N285.85 (7)H7B—C7—H7C109.5
N1i—Ni1—N294.15 (7)C6—C8—H8A109.5
N2i—Ni1—N2180.000 (1)C6—C8—H8B109.5
O1—P1—O296.75 (9)H8A—C8—H8B109.5
O1—P1—S1112.77 (7)C6—C8—H8C109.5
O2—P1—S1111.07 (7)H8A—C8—H8C109.5
O1—P1—S2106.04 (6)H8B—C8—H8C109.5
O2—P1—S2110.96 (7)C10—C9—C14120.0 (2)
S1—P1—S2117.27 (4)C10—C9—O1115.11 (19)
C9—O1—P1127.94 (14)C14—C9—O1124.9 (2)
C16—O2—P1122.66 (13)C9—C10—C11120.1 (2)
C1—N1—C4119.78 (18)C9—C10—H10120.0
C1—N1—Ni1128.75 (15)C11—C10—H10120.0
C4—N1—Ni1111.31 (12)C12—C11—C10121.6 (2)
C5—N2—C6115.10 (16)C12—C11—H11119.2
C5—N2—Ni1107.47 (12)C10—C11—H11119.2
C6—N2—Ni1119.17 (13)C13—C12—C11117.2 (2)
C5—N2—H1106.3 (14)C13—C12—C15120.9 (3)
C6—N2—H1107.6 (14)C11—C12—C15121.9 (3)
Ni1—N2—H199.3 (14)C12—C13—C14122.3 (2)
N1—C1—C3120.94 (19)C12—C13—H13118.8
N1—C1—C2123.7 (2)C14—C13—H13118.8
C3—C1—C2115.32 (19)C9—C14—C13118.8 (2)
C1—C2—H2A109.5C9—C14—H14120.6
C1—C2—H2B109.5C13—C14—H14120.6
H2A—C2—H2B109.5C12—C15—H15A109.5
C1—C2—H2C109.5C12—C15—H15B109.5
H2A—C2—H2C109.5H15A—C15—H15B109.5
H2B—C2—H2C109.5C12—C15—H15C109.5
C1—C3—C6i117.74 (17)H15A—C15—H15C109.5
C1—C3—H3A107.9H15B—C15—H15C109.5
C6i—C3—H3A107.9C17—C16—C21120.8 (2)
C1—C3—H3B107.9C17—C16—O2118.9 (2)
C6i—C3—H3B107.9C21—C16—O2120.3 (2)
H3A—C3—H3B107.2C16—C17—C18118.9 (3)
N1—C4—C5106.65 (18)C16—C17—H17120.6
N1—C4—H4A110.4C18—C17—H17120.6
C5—C4—H4A110.4C19—C18—C17121.7 (3)
N1—C4—H4B110.4C19—C18—H18119.2
C5—C4—H4B110.4C17—C18—H18119.2
H4A—C4—H4B108.6C20—C19—C18117.9 (3)
N2—C5—C4106.26 (17)C20—C19—C22121.5 (4)
N2—C5—H5A110.5C18—C19—C22120.6 (4)
C4—C5—H5A110.5C19—C20—C21121.9 (3)
N2—C5—H5B110.5C19—C20—H20119.1
C4—C5—H5B110.5C21—C20—H20119.1
H5A—C5—H5B108.7C16—C21—C20118.9 (3)
N2—C6—C3i106.09 (16)C16—C21—H21120.6
N2—C6—C8110.29 (17)C20—C21—H21120.6
C3i—C6—C8112.3 (2)C19—C22—H22A109.5
N2—C6—C7110.74 (19)C19—C22—H22B109.5
C3i—C6—C7106.99 (18)H22A—C22—H22B109.5
C8—C6—C7110.33 (18)C19—C22—H22C109.5
C6—C7—H7A109.5H22A—C22—H22C109.5
C6—C7—H7B109.5H22B—C22—H22C109.5
O2—P1—O1—C961.8 (2)C5—N2—C6—C755.6 (2)
S1—P1—O1—C954.5 (2)Ni1—N2—C6—C7174.50 (14)
S2—P1—O1—C9175.93 (17)P1—O1—C9—C10171.21 (17)
O1—P1—O2—C16178.20 (17)P1—O1—C9—C1410.6 (4)
S1—P1—O2—C1660.61 (18)C14—C9—C10—C110.4 (4)
S2—P1—O2—C1671.73 (17)O1—C9—C10—C11177.9 (2)
N2i—Ni1—N1—C110.52 (18)C9—C10—C11—C120.2 (4)
N2—Ni1—N1—C1169.48 (18)C10—C11—C12—C130.4 (4)
N2i—Ni1—N1—C4174.05 (14)C10—C11—C12—C15179.4 (3)
N2—Ni1—N1—C45.95 (14)C11—C12—C13—C140.1 (5)
N1i—Ni1—N2—C5157.85 (14)C15—C12—C13—C14179.2 (3)
N1i—Ni1—N2—C624.62 (14)C10—C9—C14—C130.6 (4)
C4—N1—C1—C3177.86 (19)O1—C9—C14—C13177.5 (2)
Ni1—N1—C1—C37.0 (3)C12—C13—C14—C90.4 (5)
C4—N1—C1—C23.3 (3)P1—O2—C16—C17101.5 (2)
Ni1—N1—C1—C2171.82 (17)P1—O2—C16—C2181.8 (2)
N1—C1—C3—C6i33.5 (3)C21—C16—C17—C180.4 (4)
C2—C1—C3—C6i147.6 (2)O2—C16—C17—C18176.3 (2)
C1—N1—C4—C5143.51 (19)C16—C17—C18—C190.1 (4)
Ni1—N1—C4—C532.4 (2)C17—C18—C19—C201.2 (5)
C6—N2—C5—C4179.55 (17)C17—C18—C19—C22178.5 (3)
Ni1—N2—C5—C445.1 (2)C18—C19—C20—C211.9 (5)
N1—C4—C5—N249.9 (2)C22—C19—C20—C21177.8 (3)
C5—N2—C6—C3i171.36 (17)C17—C16—C21—C200.2 (4)
Ni1—N2—C6—C3i58.76 (19)O2—C16—C21—C20176.9 (2)
C5—N2—C6—C866.8 (2)C19—C20—C21—C161.4 (4)
Ni1—N2—C6—C863.1 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C16H32N4)](C14H14O2PS2)2
Mr957.85
Crystal system, space groupTriclinic, P1
Temperature (K)278
a, b, c (Å)8.0044 (6), 10.0996 (8), 16.4004 (12)
α, β, γ (°)80.418 (1), 81.333 (1), 69.836 (1)
V3)1220.95 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.18 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.888, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
6525, 4305, 3756
Rint0.012
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections4305
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Education Committee of Sichuan Province of China (project No. 2006 A110, 07ZA161), the Science and Technology Office of Zigong City of China (project No. 08X01), and the University Key Laboratory of Corrosin and Protection of Materials of Sichuan Province of China (project No. 2008 C L04).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds