organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-(1-naphthyl­amino­methyl­ene)-1,3-dioxane-4,6-dione

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: lirui@scu.edu.cn

(Received 29 July 2009; accepted 25 August 2009; online 29 August 2009)

The benzyl ring of the title compound, C17H15NO4, is twisted away from the plane defined by five atoms of the dioxane ring by 34.83 (4)°. The dioxane ring exhibits a half-boat conformation, with the C atom between the dioxane O atoms 0.571 (8) Å out of the plane through the remainder of the ring. An intra­molecular N—H⋯O hydrogen bond may contribute to the stabilization of the planar conformation of the mol­ecule. In the crystal, inversion dimers linked by pairs of C—H⋯O bonds occur.

Related literature

For the synthesis of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]). For the pharmacological activity of 4(1H)-quinolone structures, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15NO4

  • Mr = 297.30

  • Triclinic, [P \overline 1]

  • a = 7.4696 (11) Å

  • b = 8.0805 (12) Å

  • c = 12.1240 (18) Å

  • α = 98.601 (2)°

  • β = 96.428 (2)°

  • γ = 92.198 (2)°

  • V = 717.87 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4513 measured reflections

  • 3194 independent reflections

  • 2571 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.03

  • 3194 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.920 (18) 1.982 (18) 2.7130 (16) 135.2 (15)
C1—H1C⋯O4i 0.98 2.60 3.3709 (19) 136
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4(1H)-Quinolone structures have long attracted pharmacological interest as anticancer agents, anti-malarial agents and reversible (H+/K+) ATPase inhibitors (Ruchelman et al., 2003). Thermolysis of 5-arylaminomethylene-2,2-dimethyl-1,3-dioxane-4,6-diones is an effective method to synthesize 4(1H)quinolone derivatives (Cassis et al., 1985).

The benzyl ring is twisted away from the plane defined by the dioxane ring by 34.83 (4)°. In turn, the dioxane ring of the title compound exhibits an envelope conformation, in which the flap atom, the C atom between the dioxane oxygen atoms, is -0.571 (8) Å out of the plane. An intramolecular N—H···O hydrogen bond (Table 1) could lead to the dioxane ring and the aminomethylene group taking up their planar conformation.

Related literature top

For the synthesis of related compounds, see: Cassis et al. (1985) and of related antitumor precursors, see Ruchelman et al. (2003).

Experimental top

An ethanol solution (50 ml) of 2,2-dimethyl-1,3-dioxane-4,6-dione (Meldrum's acid) (1.44 g, 0.01 mol) and methylorthoformate (1.27 g, 0.012 mol) was heated to reflux for 2 h, then the naphthalen-1-amine (1.43 g, 0.01 mol) was added into the above solution. The mixture was heated under reflux for another 8 h and then filtered. Single crystals were obtained from the filtrate after 2 days.

Refinement top

The imino H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model with Uĩso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The hydrogen bond is shown by a dashed line.
2,2-Dimethyl-5-(1-naphthylaminomethylene)-1,3-dioxane-4,6-dione top
Crystal data top
C17H15NO4Z = 2
Mr = 297.30F(000) = 312
Triclinic, P1Dx = 1.375 Mg m3
a = 7.4696 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0805 (12) ÅCell parameters from 2197 reflections
c = 12.1240 (18) Åθ = 2.6–27.5°
α = 98.601 (2)°µ = 0.10 mm1
β = 96.428 (2)°T = 153 K
γ = 92.198 (2)°Block, colourless
V = 717.87 (18) Å30.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.6°, θmin = 2.6°
ϕ and ω scansh = 96
4513 measured reflectionsk = 1010
3194 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1278P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3194 reflectionsΔρmax = 0.18 e Å3
206 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.204 (9)
Crystal data top
C17H15NO4γ = 92.198 (2)°
Mr = 297.30V = 717.87 (18) Å3
Triclinic, P1Z = 2
a = 7.4696 (11) ÅMo Kα radiation
b = 8.0805 (12) ŵ = 0.10 mm1
c = 12.1240 (18) ÅT = 153 K
α = 98.601 (2)°0.25 × 0.20 × 0.20 mm
β = 96.428 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2571 reflections with I > 2σ(I)
4513 measured reflectionsRint = 0.014
3194 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
3194 reflectionsΔρmin = 0.16 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.75507 (13)0.44446 (12)0.48110 (8)0.0482 (3)
O20.61634 (12)0.29559 (12)0.60505 (7)0.0468 (3)
O30.66547 (15)0.40648 (13)0.29855 (8)0.0567 (3)
O40.36615 (13)0.13711 (12)0.54766 (8)0.0501 (3)
N10.41749 (15)0.15238 (15)0.21325 (9)0.0431 (3)
H10.496 (3)0.236 (2)0.2012 (15)0.074 (5)*
C10.9036 (2)0.21096 (19)0.54644 (13)0.0529 (4)
H1A0.92470.15110.61090.079*
H1B1.01930.25410.52810.079*
H1C0.84320.13400.48160.079*
C20.8669 (2)0.4816 (2)0.67397 (13)0.0583 (4)
H2A0.78300.57040.68870.087*
H2B0.98090.53060.65710.087*
H2C0.88950.42620.74040.087*
C30.78588 (18)0.35520 (17)0.57518 (11)0.0433 (3)
C40.64805 (18)0.36396 (16)0.38885 (11)0.0420 (3)
C50.51881 (17)0.23873 (16)0.40821 (10)0.0384 (3)
C60.49111 (17)0.21600 (16)0.52166 (10)0.0393 (3)
C70.41364 (17)0.14044 (16)0.32061 (10)0.0401 (3)
H70.33220.05790.33850.048*
C80.32676 (17)0.04147 (17)0.12053 (10)0.0412 (3)
C90.2809 (2)0.12053 (18)0.12899 (12)0.0502 (3)
H90.30680.16050.19860.060*
C100.1953 (2)0.2285 (2)0.03460 (14)0.0598 (4)
H100.15840.33990.04160.072*
C110.1648 (2)0.1750 (2)0.06667 (13)0.0593 (4)
H110.10970.25050.13010.071*
C120.21389 (18)0.0086 (2)0.07868 (11)0.0495 (4)
C130.1908 (2)0.0502 (3)0.18422 (12)0.0624 (5)
H130.14150.02470.24950.075*
C140.2376 (2)0.2106 (3)0.19338 (13)0.0663 (5)
H140.22470.24600.26500.080*
C150.3050 (2)0.3242 (2)0.09805 (13)0.0608 (4)
H150.33250.43780.10470.073*
C160.3315 (2)0.2734 (2)0.00486 (12)0.0513 (4)
H160.37750.35210.06900.062*
C170.29151 (17)0.10513 (18)0.01706 (10)0.0428 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0558 (6)0.0465 (5)0.0405 (5)0.0043 (4)0.0028 (4)0.0094 (4)
O20.0450 (5)0.0633 (6)0.0309 (5)0.0001 (4)0.0023 (4)0.0057 (4)
O30.0686 (7)0.0633 (6)0.0400 (6)0.0081 (5)0.0034 (5)0.0195 (5)
O40.0499 (6)0.0620 (6)0.0394 (5)0.0027 (5)0.0111 (4)0.0081 (4)
N10.0441 (6)0.0532 (7)0.0315 (6)0.0003 (5)0.0015 (4)0.0076 (5)
C10.0452 (8)0.0568 (8)0.0550 (9)0.0065 (6)0.0014 (6)0.0080 (7)
C20.0610 (9)0.0622 (9)0.0457 (8)0.0021 (7)0.0061 (7)0.0001 (7)
C30.0440 (7)0.0503 (7)0.0346 (7)0.0002 (6)0.0001 (5)0.0074 (5)
C40.0478 (7)0.0433 (7)0.0349 (7)0.0044 (5)0.0014 (5)0.0081 (5)
C50.0398 (7)0.0448 (7)0.0311 (6)0.0056 (5)0.0023 (5)0.0079 (5)
C60.0398 (7)0.0447 (7)0.0335 (6)0.0069 (5)0.0037 (5)0.0055 (5)
C70.0391 (7)0.0483 (7)0.0341 (6)0.0060 (5)0.0047 (5)0.0087 (5)
C80.0357 (6)0.0547 (8)0.0322 (6)0.0057 (5)0.0033 (5)0.0030 (5)
C90.0539 (8)0.0557 (8)0.0414 (7)0.0080 (6)0.0071 (6)0.0062 (6)
C100.0617 (10)0.0548 (9)0.0594 (10)0.0020 (7)0.0080 (7)0.0026 (7)
C110.0517 (9)0.0699 (10)0.0475 (9)0.0058 (7)0.0028 (7)0.0136 (7)
C120.0386 (7)0.0714 (9)0.0354 (7)0.0127 (6)0.0010 (5)0.0017 (6)
C130.0523 (9)0.0978 (13)0.0327 (7)0.0195 (8)0.0036 (6)0.0017 (8)
C140.0590 (10)0.1060 (14)0.0386 (8)0.0215 (9)0.0055 (7)0.0229 (9)
C150.0567 (9)0.0829 (11)0.0477 (9)0.0095 (8)0.0052 (7)0.0246 (8)
C160.0489 (8)0.0663 (9)0.0391 (7)0.0034 (7)0.0023 (6)0.0119 (6)
C170.0343 (6)0.0622 (8)0.0315 (6)0.0089 (6)0.0040 (5)0.0044 (6)
Geometric parameters (Å, º) top
O1—C41.3622 (15)C7—H70.9500
O1—C31.4403 (15)C8—C91.362 (2)
O2—C61.3632 (15)C8—C171.4271 (18)
O2—C31.4405 (16)C9—C101.405 (2)
O3—C41.2142 (15)C9—H90.9500
O4—C61.2072 (15)C10—C111.360 (2)
N1—C71.3229 (16)C10—H100.9500
N1—C81.4170 (16)C11—C121.413 (2)
N1—H10.920 (18)C11—H110.9500
C1—C31.510 (2)C12—C171.4204 (19)
C1—H1A0.9800C12—C131.425 (2)
C1—H1B0.9800C13—C141.353 (3)
C1—H1C0.9800C13—H130.9500
C2—C31.5063 (19)C14—C151.396 (2)
C2—H2A0.9800C14—H140.9500
C2—H2B0.9800C15—C161.367 (2)
C2—H2C0.9800C15—H150.9500
C4—C51.4345 (18)C16—C171.414 (2)
C5—C71.3743 (17)C16—H160.9500
C5—C61.4508 (17)
C4—O1—C3116.84 (10)N1—C7—H7117.6
C6—O2—C3118.48 (10)C5—C7—H7117.6
C7—N1—C8126.21 (12)C9—C8—N1121.29 (12)
C7—N1—H1113.8 (11)C9—C8—C17121.54 (12)
C8—N1—H1119.7 (11)N1—C8—C17117.13 (12)
C3—C1—H1A109.5C8—C9—C10119.85 (14)
C3—C1—H1B109.5C8—C9—H9120.1
H1A—C1—H1B109.5C10—C9—H9120.1
C3—C1—H1C109.5C11—C10—C9120.64 (15)
H1A—C1—H1C109.5C11—C10—H10119.7
H1B—C1—H1C109.5C9—C10—H10119.7
C3—C2—H2A109.5C10—C11—C12120.82 (14)
C3—C2—H2B109.5C10—C11—H11119.6
H2A—C2—H2B109.5C12—C11—H11119.6
C3—C2—H2C109.5C11—C12—C17119.39 (13)
H2A—C2—H2C109.5C11—C12—C13122.49 (14)
H2B—C2—H2C109.5C17—C12—C13118.11 (15)
O1—C3—O2110.06 (10)C14—C13—C12121.36 (15)
O1—C3—C2106.69 (11)C14—C13—H13119.3
O2—C3—C2105.71 (11)C12—C13—H13119.3
O1—C3—C1109.85 (11)C13—C14—C15120.28 (15)
O2—C3—C1110.62 (11)C13—C14—H14119.9
C2—C3—C1113.75 (12)C15—C14—H14119.9
O3—C4—O1118.14 (12)C16—C15—C14120.52 (16)
O3—C4—C5125.52 (12)C16—C15—H15119.7
O1—C4—C5116.31 (11)C14—C15—H15119.7
C7—C5—C4121.36 (11)C15—C16—C17120.84 (15)
C7—C5—C6117.92 (11)C15—C16—H16119.6
C4—C5—C6120.69 (11)C17—C16—H16119.6
O4—C6—O2118.28 (11)C16—C17—C12118.73 (13)
O4—C6—C5125.74 (12)C16—C17—C8123.65 (12)
O2—C6—C5115.95 (11)C12—C17—C8117.61 (13)
N1—C7—C5124.76 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.920 (18)1.982 (18)2.7130 (16)135.2 (15)
C1—H1C···O4i0.982.603.3709 (19)136
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H15NO4
Mr297.30
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.4696 (11), 8.0805 (12), 12.1240 (18)
α, β, γ (°)98.601 (2), 96.428 (2), 92.198 (2)
V3)717.87 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4513, 3194, 2571
Rint0.014
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.03
No. of reflections3194
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.920 (18)1.982 (18)2.7130 (16)135.2 (15)
C1—H1C···O4i0.982.603.3709 (19)136
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This research was supported financially by the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences.

References

First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRuchelman, A. L., Singh, S. K., Ray, A., Wu, X. H., Yang, J. M., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds