organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2180-o2181

DL-Asparaginium nitrate

aLaboratoire de Chimie Moléculaire, du Contrôle, de l'Environnement et des Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bCristallographie, Résonance Magnétique et Modélisation (CRM2), Université Henri Poincaré, Nancy 1, Faculté des Sciences, BP 70239, 54506 Vandoeuvre lès Nancy CEDEX, France
*Correspondence e-mail: c_aouatef@yahoo.fr

(Received 5 June 2009; accepted 11 August 2009; online 19 August 2009)

In the title compound, C4H9N2O3+·NO3, alternatively called (1RS)-2-carbamoyl-1-carboxy­ethanaminium nitrate, the asymmetric unit comprises one asparaginium cation and one nitrate anion. The strongest cation–cation O—H⋯O hydrogen bond in the structure, together with other strong cation–cation N—H⋯O hydrogen bonds, generates a succession of infinite chains of R22(8) rings along the b axis. Additional cation–cation C—H⋯O hydrogen bonds link these chains into two-dimensional layers formed by alternating R44(24) and R42(12) rings. Connections between these layers are provided by the strong cation–anion N—H⋯O hydrogen bonds, as well as by one weak C—H⋯O inter­action, thus forming a three-dimensional network. Some of the cation–anion N—H⋯O hydrogen bonds are bifurcated of the type D—H⋯(A1,A2).

Related literature

DL-Asparagine has been used in growth media for bacteria, see: Gerhardt & Wilson (1948[Gerhardt, P. & Wilson, J. B. (1948). J. Bacteriol. 56, 17-24.]); Palleroni et al. (1973[Palleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. (1973). Int. J. Syst. Bacteriol. 23, 333-339.]); Wagtendonk et al. (1963[Wagtendonk, W. J. van, Clark, J. A. D. & Godoy, G. A. (1963). Proc. Natl Acad. Sci. USA, 50, 835-838.]). For related structures, see Aarthy et al. (2005[Aarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042-o2044.]); Anitha et al. (2005[Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463-o1465.]); Arnold et al. (2000[Arnold, W. D., Sanders, L. K., McMahon, M. T., Volkov, A. V., Wu, G., Coppens, P., Wilson, S. R., Godbout, N. & Oldfield, E. (2000). J. Am. Chem. Soc. 122, 4708-4717.]); Flaig et al. (2002[Flaig, R., Koritsanszky, T., Dittrich, B., Wagner, A. & Luger, P. (2002). J. Am. Chem. Soc. 124, 3407-3417.]); Kartha & de Vries (1961[Kartha, G. & de Vries, A. (1961). Nature (London), 192, 862-863.]); Ramanadham et al. (1972[Ramanadham, M., Sikka, S. K. & Chidambaram, R. (1972). Acta Cryst. B28, 3000-3005.]); Smirnova et al. (1990[Smirnova, V. I., Sorokina, N. I., Safonov, A. A., Verin, I. A. & Tischenko, G. N. (1990). Kristallografiya, 35, 50-53.]); Verbist et al. (1972[Verbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Acta Cryst. B28, 3006-3013.]); Wang et al. (1985[Wang, J. L., Berkovitch-Yellin, Z. & Leiserowitz, L. (1985). Acta Cryst. B41, 341-348.]); Weisinger-Lewin et al. (1989[Weisinger-Lewin, Y., Frolow, F., McMullan, R. K., Koetzle, T. F., Lahav, M. & Leiserowitz, L. (1989). J. Am. Chem. Soc. 111, 1035-1040.]); Yamada et al. (2007[Yamada, K., Hashizume, D., Shimizu, T. & Yokoyama, S. (2007). Acta Cryst. E63, o3802-o3803.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 66. International Union of Crystallography Monographs on Crystallography. New York: Oxford University Press Inc.]). For hydrogen-bond morifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C4H9N2O3+·NO3

  • Mr = 195.14

  • Monoclinic, P 21 /c

  • a = 7.923 (2) Å

  • b = 9.608 (2) Å

  • c = 10.613 (3) Å

  • β = 107.105 (2)°

  • V = 772.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.09 mm

Data collection
  • Oxford Diffraction Xcalibur–Sapphire2 CCD diffractometer

  • Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]) Tmin = 0.966, Tmax = 0.991

  • 19446 measured reflections

  • 2236 independent reflections

  • 1804 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.07

  • 2236 reflections

  • 136 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.845 (16) 1.736 (16) 2.571 (2) 169.0 (17)
N2—H1N⋯O4ii 0.899 (15) 1.962 (15) 2.822 (2) 159.6 (13)
N2—H2N⋯O3 0.907 (15) 2.406 (16) 2.965 (2) 119.9 (12)
N2—H2N⋯O5 0.907 (15) 2.233 (14) 3.024 (2) 145.4 (13)
N2—H2N⋯O6 0.907 (15) 2.474 (15) 3.039 (2) 120.7 (11)
N2—H3N⋯O4iii 0.903 (14) 2.454 (14) 3.157 (2) 135.0 (12)
N2—H3N⋯O6iii 0.903 (14) 2.068 (15) 2.957 (2) 168.3 (14)
N3—H5N⋯O2iv 0.893 (16) 2.064 (15) 2.924 (2) 161.4 (15)
C3—H3⋯O5v 0.99 2.36 3.086 (2) 130
C3—H4⋯O2v 0.99 2.39 3.313 (2) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

DL-asparagine, the racemic melange of the aparagine L and D-enantiomers, has been used in growth-media for bacteria-growth such as Brucellae (Gerhardt & Wilson, 1948), Pseudomonas fluorescens (Palleroni et al., 1973) and lambda particles (van Wagtendonk et al., 1963).

The crystal structures of the L-enantiomer compounds are reported most often, indeed, L-asparagine monohydrate, determined by X-ray or neutron diffraction, has been reported for the first time by Kartha & de Vries (1961) and then reported, i.a., by Verbist et al. (1972); Ramanadham et al. (1972); Wang et al. (1985); Weisinger-Lewin et al. (1989); Smirnova et al. (1990); Arnold et al. (2000); Flaig et al. (2002).

Recently, Yamada et al. (2007) reported the crystal structure of the anhydrous L-asparagine and Aarthy et al. (2005) reported the crystal structure of L-asparaginium nitrate.

In the present study, the single-crystal structure determination of anhydrous DL-asparaginium nitrate as a part of the work of our team is reported. The asymmetric unit is formed by the monoprotonated asparaginium cation (C4H9O3N2)+ and the nitrate anion (NO3)- (Fig. 1). Observation of the build-up of the electron density in the vicinity of O1, the different C-O bond distances [1.3116 (16) and 1.2143 (15) Å ] and the pertinent O-C-O bond angle [126.2 (1)°] clearly confirm the protonation of the carboxyl group.

The crystal structure is stabilized by O-H···O, N-H···O and C-H···O, cation-cation (Fig. 2) and cation-anion (Fig. 3) hydrogen bonds. The O1-H1···O3 cation-cation hydrogen bond is the strongest one observed in the title structure at all (Tab. 1).

The O1-H1···O3 and N3-H5N···O2 cation-cation hydrogen bonds generate a succession of infinite chains composed of R22(8) rings that propagate in a zig-zagged way along the axis b (Fig. 4). These chains are interconnected by C3-H4···O2 hydrogen bonds (Tab. 1), giving rise to two-dimensional cationic layers which are formed by a succession of alternating R42(12) and R44(24) rings (Fig. 4). The former ring includes also N3-H5N···O2 while the latter O1-H1···O3 intermolecular hydrogen bonds (see Tab. 1). The cation-anion hydrogen bonds interlink the cationic layers into a three-dimensional network (Fig. 5). Some of the cation-anion N—H···O hydrogen bonds are bifurcated of the type D-H···(A1,A2) (Desiraju & Steiner, 1999).

The backbone conformation of the cation asparaginium is stabilized by the intramolecular N2-H2N···O3 interaction, with the S(6) motif (Bernstein et al., 1995), between the O atom of the amide group as an acceptor and one of the H atoms of the -NH3 group. The pertinent angle N2-H2N···O3 is quite acute (Tab. 1). A similiar intramolecular interaction is observed in L-asparaginium picrate (Anitha et al., 2005) and L-asparaginium nitrate (Aarthy et al., 2005).

In this study the graph-set suggested by Etter et al. (1990) and the quantitative graph set descriptor Gad(n) (Bernstein et al., 1995) are used in order to describe the hydrogen bonds in the title structure (Tab. 1). The unitary graph set is composed of ten motifs: N1 = C(7)C(7)S(6)C(5)DDDDDD where C(7) applies for O1—H···O3 and N3—H5N···O2; S(6) for N2—H2N···O3 and C(5) for C3—H4···O2 while the rest of the motifs D refer to the cation-anion interactions.

Related literature top

DL-asparagine has been used in growth media for bacteria, see: Gerhardt & Wilson (1948); Palleroni et al. (1973); Wagtendonk et al. (1963). For related structures, see Aarthy et al. (2005); Anitha et al. (2005); Arnold et al. (2000); Flaig et al. (2002); Kartha & de Vries (1961); Ramanadham et al. (1972); Smirnova et al. (1990); Verbist et al. (1972); Wang et al. (1985); Weisinger-Lewin et al. (1989); Yamada et al. (2007). For hydrogen bonding, see: Desiraju & Steiner (1999). For hydrogen-bond morifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was prepared by heating of a mixture of DL-asparagine monohydrate of purity 98 % (Alfa Aesar) and nitric acid. This mixture was obtained by dissolution and agitation for 20 minutes of 0.75 g of the DL-asparagine monohydrate in 15 ml of water at 25°C followed by addition of 15 ml of 1 M nitric acid. Colourless needle crystals with approximate dimensions 0.30 x 0.20 x 0.10 mm were obtained by evaporation of the solution at room temperature in the course of a few weeks.

Refinement top

All the H atoms were located in the difference electron density maps. All the H atoms attached to C were treated as riding with C-H = 1.00 Å (methine) or 0.99 Å (methylene) with UisoH = 1.2UeqC. The coordinate parameters of the H atoms attached to N or O were freely refined with UisoH = 1.2UeqN and UisoH = 1.5UeqO.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. The cation-cation hydrogen bonds. Symmetry codes: (i) -x+1, y+1/2, -z+3/2; (iv) -x+1, y-1/2, -z+3/2; (v) x, -y+3/2, z-1/2
[Figure 3] Fig. 3. The cation-anion hydrogen bonds. Symmetry codes: (ii) -x, y+1/2, -z+3/2; (iii) -x, -y+1, -z+1; (v) x, -y+3/2, z-1/2
[Figure 4] Fig. 4. Hydrogen bonding cation-cation infinit chains within the DL-asparaginium layer. The axis a is directed downwards from the projection plane.
[Figure 5] Fig. 5. Connection between the cationic layers via cation-anion H-bonds
(1RS)-2-carbamoyl-1-carboxyethanaminium nitrate top
Crystal data top
C4H9N2O3+·NO3F(000) = 408
Mr = 195.14Dx = 1.679 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 19446 reflections
a = 7.923 (2) Åθ = 2.9–30.0°
b = 9.608 (2) ŵ = 0.16 mm1
c = 10.613 (3) ÅT = 100 K
β = 107.105 (2)°Prism, colorless
V = 772.2 (3) Å30.3 × 0.2 × 0.09 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur–Sapphire2 CCD
diffractometer
2236 independent reflections
Radiation source: fine-focus sealed tube1804 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1111
Tmin = 0.966, Tmax = 0.991k = 1313
19446 measured reflectionsl = 1114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1163P]
where P = (Fo2 + 2Fc2)/3
2236 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H9N2O3+·NO3V = 772.2 (3) Å3
Mr = 195.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.923 (2) ŵ = 0.16 mm1
b = 9.608 (2) ÅT = 100 K
c = 10.613 (3) Å0.3 × 0.2 × 0.09 mm
β = 107.105 (2)°
Data collection top
Oxford Diffraction Xcalibur–Sapphire2 CCD
diffractometer
2236 independent reflections
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
1804 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.036
19446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.45 e Å3
2236 reflectionsΔρmin = 0.19 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35366 (11)1.04131 (8)0.62255 (8)0.0171 (2)
H10.403 (2)1.0991 (17)0.6820 (16)0.0256*
O20.21545 (11)0.96178 (8)0.76602 (8)0.0150 (2)
O30.46509 (10)0.71971 (8)0.71175 (8)0.0144 (2)
N20.07508 (13)0.74096 (10)0.61109 (10)0.0133 (3)
H1N0.0164 (19)0.7751 (15)0.6650 (14)0.0158*
H2N0.1526 (19)0.6789 (15)0.6612 (14)0.0158*
H3N0.0026 (19)0.6923 (15)0.5440 (14)0.0158*
N30.57418 (14)0.66187 (11)0.54436 (11)0.0172 (3)
H4N0.5623 (19)0.6635 (16)0.4621 (16)0.0207*
H5N0.659 (2)0.6100 (16)0.5979 (15)0.0207*
C10.24959 (14)0.95636 (10)0.66154 (11)0.0118 (3)
C20.16701 (14)0.84965 (10)0.55565 (10)0.0111 (3)
H20.075260.898880.484450.0134*
C30.29888 (14)0.78621 (11)0.49291 (10)0.0129 (3)
H30.342260.859860.444990.0154*
H40.237980.715210.427750.0154*
C40.45449 (14)0.71962 (10)0.59194 (11)0.0117 (3)
O40.10171 (10)0.28059 (8)0.69646 (8)0.0164 (2)
O50.18243 (12)0.48467 (9)0.78126 (9)0.0228 (3)
O60.17667 (12)0.44085 (9)0.57939 (9)0.0204 (3)
N10.15474 (12)0.40279 (9)0.68709 (9)0.0132 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0149 (4)0.0156 (4)0.0083 (3)0.0074 (3)0.0035 (3)
O20.0182 (4)0.0129 (3)0.0149 (4)0.0026 (3)0.0064 (3)0.0031 (3)
O30.0147 (4)0.0153 (4)0.0131 (4)0.0045 (3)0.0040 (3)0.0021 (3)
N20.0129 (4)0.0116 (4)0.0153 (5)0.0020 (3)0.0042 (4)0.0034 (3)
N30.0171 (5)0.0193 (5)0.0168 (5)0.0066 (4)0.0074 (4)0.0029 (4)
C10.0105 (5)0.0090 (4)0.0144 (5)0.0017 (3)0.0012 (4)0.0007 (4)
C20.0113 (5)0.0096 (4)0.0117 (5)0.0008 (3)0.0021 (4)0.0004 (3)
C30.0139 (5)0.0125 (4)0.0117 (5)0.0029 (4)0.0030 (4)0.0000 (4)
C40.0119 (5)0.0083 (4)0.0151 (5)0.0003 (3)0.0043 (4)0.0010 (4)
O40.0158 (4)0.0115 (4)0.0222 (4)0.0018 (3)0.0061 (3)0.0004 (3)
O50.0249 (5)0.0228 (4)0.0197 (4)0.0048 (3)0.0049 (4)0.0115 (3)
O60.0266 (5)0.0189 (4)0.0205 (4)0.0002 (3)0.0142 (4)0.0018 (3)
N10.0104 (4)0.0127 (4)0.0164 (5)0.0004 (3)0.0037 (3)0.0027 (3)
Geometric parameters (Å, º) top
O1—C11.3107 (16)N2—H3N0.903 (14)
O2—C11.2173 (16)N2—H2N0.907 (15)
O3—C41.2494 (16)N3—H5N0.893 (16)
O1—H10.845 (16)N3—H4N0.850 (16)
O4—N11.2608 (14)C1—C21.5198 (17)
O5—N11.2397 (15)C2—C31.5218 (18)
O6—N11.2599 (15)C3—C41.5072 (18)
N2—C21.4898 (17)C2—H21.0000
N3—C41.3205 (18)C3—H30.9900
N2—H1N0.899 (15)C3—H40.9900
C1—O1—H1111.7 (11)C1—C2—C3113.09 (9)
H2N—N2—H3N106.6 (13)N2—C2—C3111.74 (8)
C2—N2—H2N111.5 (10)N2—C2—C1109.57 (9)
H1N—N2—H3N111.3 (14)C2—C3—C4113.02 (9)
C2—N2—H1N113.6 (9)N3—C4—C3116.35 (10)
C2—N2—H3N108.9 (9)O3—C4—N3123.27 (11)
H1N—N2—H2N104.7 (13)O3—C4—C3120.38 (10)
C4—N3—H4N120.7 (11)N2—C2—H2107.00
H4N—N3—H5N119.9 (15)C1—C2—H2107.00
C4—N3—H5N118.8 (10)C3—C2—H2107.00
O4—N1—O6118.68 (9)C2—C3—H4109.00
O5—N1—O6120.55 (9)H3—C3—H4108.00
O4—N1—O5120.76 (9)C4—C3—H3109.00
O1—C1—C2111.14 (9)C4—C3—H4109.00
O1—C1—O2126.15 (10)C2—C3—H3109.00
O2—C1—C2122.67 (10)
O1—C1—C2—N2170.37 (9)N2—C2—C3—C467.79 (11)
O1—C1—C2—C345.00 (12)C1—C2—C3—C456.40 (11)
O2—C1—C2—N211.93 (15)C2—C3—C4—O30.35 (14)
O2—C1—C2—C3137.30 (11)C2—C3—C4—N3179.75 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.845 (16)1.736 (16)2.571 (2)169.0 (17)
N2—H1N···O4ii0.899 (15)1.962 (15)2.822 (2)159.6 (13)
N2—H2N···O30.907 (15)2.406 (16)2.965 (2)119.9 (12)
N2—H2N···O50.907 (15)2.233 (14)3.024 (2)145.4 (13)
N2—H2N···O60.907 (15)2.474 (15)3.039 (2)120.7 (11)
N2—H3N···O4iii0.903 (14)2.454 (14)3.157 (2)135.0 (12)
N2—H3N···O6iii0.903 (14)2.068 (15)2.957 (2)168.3 (14)
N3—H5N···O2iv0.893 (16)2.064 (15)2.924 (2)161.4 (15)
C3—H3···O5v0.99002.36003.086 (2)130.00
C3—H4···O2v0.99002.39003.313 (2)156.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H9N2O3+·NO3
Mr195.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.923 (2), 9.608 (2), 10.613 (3)
β (°) 107.105 (2)
V3)772.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.3 × 0.2 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur–Sapphire2 CCD
diffractometer
Absorption correctionGaussian
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
19446, 2236, 1804
Rint0.036
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.07
No. of reflections2236
No. of parameters136
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.845 (16)1.736 (16)2.571 (2)169.0 (17)
N2—H1N···O4ii0.899 (15)1.962 (15)2.822 (2)159.6 (13)
N2—H2N···O30.907 (15)2.406 (16)2.965 (2)119.9 (12)
N2—H2N···O50.907 (15)2.233 (14)3.024 (2)145.4 (13)
N2—H2N···O60.907 (15)2.474 (15)3.039 (2)120.7 (11)
N2—H3N···O4iii0.903 (14)2.454 (14)3.157 (2)135.0 (12)
N2—H3N···O6iii0.903 (14)2.068 (15)2.957 (2)168.3 (14)
N3—H5N···O2iv0.893 (16)2.064 (15)2.924 (2)161.4 (15)
C3—H3···O5v0.99002.36003.086 (2)130.00
C3—H4···O2v0.99002.39003.313 (2)156.00
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z1/2.
 

Acknowledgements

Technical support (X-ray measurements at SCDRX) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

References

First citationAarthy, A., Anitha, K., Athimoolam, S., Bahadur, S. A. & Rajaram, R. K. (2005). Acta Cryst. E61, o2042–o2044.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1463–o1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArnold, W. D., Sanders, L. K., McMahon, M. T., Volkov, A. V., Wu, G., Coppens, P., Wilson, S. R., Godbout, N. & Oldfield, E. (2000). J. Am. Chem. Soc. 122, 4708-4717.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 66. International Union of Crystallography Monographs on Crystallography. New York: Oxford University Press Inc.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlaig, R., Koritsanszky, T., Dittrich, B., Wagner, A. & Luger, P. (2002). J. Am. Chem. Soc. 124, 3407–3417.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGerhardt, P. & Wilson, J. B. (1948). J. Bacteriol. 56, 17-24.  PubMed CAS Google Scholar
First citationKartha, G. & de Vries, A. (1961). Nature (London), 192, 862–863.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Wrocław, Poland.  Google Scholar
First citationPalleroni, N. J., Kunisawa, R., Contopoulou, R. & Doudoroff, M. (1973). Int. J. Syst. Bacteriol. 23, 333–339.  CrossRef CAS Google Scholar
First citationRamanadham, M., Sikka, S. K. & Chidambaram, R. (1972). Acta Cryst. B28, 3000–3005.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmirnova, V. I., Sorokina, N. I., Safonov, A. A., Verin, I. A. & Tischenko, G. N. (1990). Kristallografiya, 35, 50–53.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerbist, J. J., Lehmann, M. S., Koetzle, T. F. & Hamilton, W. C. (1972). Acta Cryst. B28, 3006–3013.  CSD CrossRef IUCr Journals Google Scholar
First citationWagtendonk, W. J. van, Clark, J. A. D. & Godoy, G. A. (1963). Proc. Natl Acad. Sci. USA, 50, 835–838.  CrossRef PubMed Google Scholar
First citationWang, J. L., Berkovitch-Yellin, Z. & Leiserowitz, L. (1985). Acta Cryst. B41, 341–348.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWeisinger-Lewin, Y., Frolow, F., McMullan, R. K., Koetzle, T. F., Lahav, M. & Leiserowitz, L. (1989). J. Am. Chem. Soc. 111, 1035–1040.  CSD CrossRef CAS Web of Science Google Scholar
First citationYamada, K., Hashizume, D., Shimizu, T. & Yokoyama, S. (2007). Acta Cryst. E63, o3802–o3803.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2180-o2181
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds