organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2123-o2124

(2RS)-3-Hydr­­oxy-2-methyl-2-(2-pyrid­yl)imidazolidine-4-one

aKarakalpakian University, Department of Chemistry, Universitet Keshesi 1, 742012 Nukus, Uzbekistan, bKiev National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, cFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland, and dKyiv National University of Construction and Architecture, Department of Chemistry, Povitroflotsky Ave., 31, 03680 Kiev, Ukraine
*Correspondence e-mail: eprisyazhnaya@ukr.net

(Received 23 July 2009; accepted 3 August 2009; online 8 August 2009)

The title structure, C9H11N3O2, is a racemate. The chiral centre is situated at the N—C—N C atom of the imidazolidine ring. The inter­planar angle between the mean planes of the pyridine and imidazolidine rings is 89.41 (5)°. The methyl group is in a trans position with respect to the pyridine N atom. In the crystal, the mol­ecules are arranged in zigzag layers parallel to the b axis. The mol­ecules within the layers are inter­connected by strong O—H⋯N and weak N—H⋯O hydrogen bonds; the former take place between OH groups and amine N atoms and the latter between the amine N atom and the carbonyl O atom. In addition, C—H⋯O inter­actions are also present.

Related literature

For background to hydroxamic acids in biological and coord­ination chemistry, see: Miller (1989[Miller, M. J. (1989). Chem. Rev. 89, 1563-1590.]); Lipczynska-Kochany (1991[Lipczynska-Kochany, E. (1991). Chem. Rev. 91, 477-495.]); Kurzak et al. (1992[Kurzak, B., Kozłowski, H. & Farkas, E. (1992). Coord. Chem. Rev. 114, 169-188.]); Whittaker et al. (1999[Whittaker, M., Floyd, C. D., Brown, P. & Gearing, A. J. H. (1999). Chem. Rev. 99, 2735-2762.]). For reactions of α-amino hydroxamic acids with aldehydes and ketones resulting in 3-hydroxy­imidazolidin-4-one derivatives, see: Vystorop et al. (2002[Vystorop, I. V., Lyssenko, K. A. & Kostyanovsky, R. G. (2002). Mendeleev Commun. pp. 85-86.], 2003[Vystorop, I. V., Lyssenko, K. A., Kostyanovsky, R. G. & Remir, G. (2003). Mendeleev Commun. pp. 116-117.]); Marson & Pucci (2004[Marson, C. M. & Pucci, S. (2004). Tetrahedron Lett. 45, 9007-9012.]). For related structures, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Krämer et al. (2002[Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307-1314.]); Kovbasyuk et al. (2004[Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880-881.]). For the synthesis, see: Cunningham et al. (1949[Cunningham, K. G., Newbold, G. T., Spring, F. S. & Stark, J. (1949). J. Chem. Soc. pp. 2091-2096.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. International Union of Crystallography Monographs on Crystallography. New York: Oxford Science Publications.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2

  • Mr = 193.21

  • Monoclinic, P 21 /c

  • a = 8.207 (2) Å

  • b = 10.604 (2) Å

  • c = 10.642 (2) Å

  • β = 106.43 (3)°

  • V = 888.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.17 × 0.12 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED, Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.976, Tmax = 0.986

  • 6025 measured reflections

  • 2048 independent reflections

  • 1772 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.12

  • 2048 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1i 0.95 (2) 1.78 (2) 2.7287 (16) 175.5 (18)
N1—H1N⋯O2ii 0.874 (17) 2.135 (18) 3.0058 (15) 173.7 (15)
C6—H6⋯O1iii 0.93 2.47 3.2867 (17) 147
C7—H7⋯O2iii 0.93 2.81 3.3559 (17) 119
C8—H8⋯O2iv 0.93 2.80 3.4177 (17) 125
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydroxamic acids are important bioligands possessing a wide spectrum of biological activities (Lipczynska-Kochany, 1991). Notably, they have a high affinity to the transition metal ions (Kurzak et al., 1992). For example, naturally occurring hydroxamate siderophores are strong Fe(III) chelators (Miller, 1989). Hydroxamic acids are also efficient metalloenzyme inhibitors, e.g. urease and matrix metalloproteinase inhibitors (Whittaker et al., 1999).

These properties have provoked current interest in the development of novel synthetic routes for preparation of new selective hydroxamate chelating agents and siderophore mimics. Recently it was found that the reactions of α-amino hydroxamic acids with aldehydes and ketons do not result in the open-chain Schiff base hydroxamic acids but afford five-membered cyclic products containing residues of 3-hydroxyimidazolidine-4-one (Marson & Pucci, 2004; Vystorop et al., 2002; Vystorop et al., 2003). Here we describe a crystal structure of the title structure, 2-methyl-2-(pyridine-2-yl)-3-hydroxyimidazolidine-4-one, obtained as a result of the condensation of glycine hydroxamic acid and 2-acetylpyridine.

The molecules of the title structure are interconnected by the H-bonds. The molecules contain a chiral centre at the C2 atom (Fig. 1) and the structure is a racemate. The molecule is not planar: the interplanar angle between the mean planes of the pyridine and imidazolidine rings equals to 89.41 (5)°. The imidazolidine ring exhibits the envelope conformation: the C2 atom is displaced by 0.320 (2) Å out of the mean plane defined by four other atoms of the ring. The methyl group is in the trans-position with respect to the pyridine nitrogen.

The bond lengths C—O, N—O and C—N in the hydroxamic function suggest the presence of the hydroxamic function in the hydroxamic form rather than in the oximic one (Świątek-Kozłowska et al., 2000). The C—N and C—C bond lengths within the pyridine ring are normal for 2-substituted pyridine derivatives (Krämer & Fritsky, 2000; Krämer et al., 2002; Kovbasyuk et al., 2004).

In the crystal packing, the molecules are arranged into zig-zagged layers by the O1—H···N2 and N2—H···O2 hydrogen bonds. These layers are parallel to the axis b. The former one takes place between NOH group and it is considered as a strong hydrogen bond (Desiraju & Steiner, 1999) while the latter one between the amine nitrogen and the carbonyl oxygen atom (Fig. 2) is considered as weak one (Desiraju & Steiner, 1999). Moreover, the mentioned layers are interconnected by C—H···O H-bonds (Tab. 1).

Related literature top

For background to hydroxamic acids in biological and coordination chemistry, see: Miller (1989); Lipczynska-Kochany (1991); Kurzak et al. (1992); Whittaker et al. (1999). For reactions of α-amino hydroxamic acids with aldehydes and ketons resulting in 3-hydroxyimidazolidin-4-one derivatives, see: Vystorop et al. (2002, 2003); Marson & Pucci (2004). For related structures, see: Krämer & Fritsky (2000); Świątek-Kozłowska et al. (2000); Krämer et al. (2002); Kovbasyuk et al. (2004). For the synthesis, see: Cunningham et al. (1949). For hydrogen bonm, see: Desiraju & Steiner (1999).

Experimental top

A suspension of glycine hydroxamic acid (0.9 g, 10 mmol) and 2-acetylpyridine (12 mmol) in 30 ml of 96% aqueous ethanol was refluxed for at 78°C for 1-2 h. The hot reaction mixture was filtered, the filtrate produced a white precipitate on cooling. The precipitate was filtered, air-dried and recrystallized from absolute ethanol to yield the title structure as colourless prismatic crystals of average size 0.25 × 0.15 × 0.15 mm. The reagent, glycine hydroxamic acid, was prepared according to the procedure described by Cunningham et al. (1949).

Refinement top

All the H-atoms were discernible in the difference electron density map. The coordinates and the isotropic displacement parameters of the hydroxyl and amine hydrogens that are involved in the strongest hydrogen bonds have been refined. The hydrogens with C atoms as their carriers were situated into the idealized positions and constrained: C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene hydrogens; UisoHaryl/methylene=1.2UeqCaryl/methylene, UisoHmethyl=1.5UeqCmethyl. The methyl H atoms have been refined with AFIX 137 [SHELXL98 (Sheldrick, 2008] so their positions with regard to the electron density maps have been optimized.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the (2R)-enantiomer of the title compound, with the displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Oxygen and nitrogen atoms are depicted as larger (hatched) and smaller (dotted) circles, respectively. The O-H···N and N-H···O hydrogen bonds are indicated by the dashed lines. The H atoms not involved in the hydrogen bonding have been omitted for the sake of clarity.
(2RS)-3-Hydroxy-2-methyl-2-(2-pyridyl)imidazolidine-4-one top
Crystal data top
C9H11N3O2F(000) = 408
Mr = 193.21Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 505 reflections
a = 8.207 (2) Åθ = 4.5–27.0°
b = 10.604 (2) ŵ = 0.11 mm1
c = 10.642 (2) ÅT = 100 K
β = 106.43 (3)°Block, colourless
V = 888.3 (3) Å30.25 × 0.17 × 0.12 mm
Z = 4
Data collection top
Kuma KM-4-CCD
diffractometer
2048 independent reflections
Radiation source: fine-focus sealed tube1772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.4°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED, Oxford Diffraction, 2006)
h = 1010
Tmin = 0.976, Tmax = 0.986k = 1214
6025 measured reflectionsl = 1013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.2114P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2048 reflectionsΔρmax = 0.31 e Å3
137 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
35 constraintsExtinction coefficient: 0.011 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C9H11N3O2V = 888.3 (3) Å3
Mr = 193.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.207 (2) ŵ = 0.11 mm1
b = 10.604 (2) ÅT = 100 K
c = 10.642 (2) Å0.25 × 0.17 × 0.12 mm
β = 106.43 (3)°
Data collection top
Kuma KM-4-CCD
diffractometer
2048 independent reflections
Absorption correction: multi-scan
(CrysAlis RED, Oxford Diffraction, 2006)
1772 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.986Rint = 0.020
6025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.31 e Å3
2048 reflectionsΔρmin = 0.21 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16520 (11)0.16310 (8)0.36523 (9)0.0161 (2)
O20.40231 (11)0.01414 (8)0.28974 (9)0.0197 (2)
N10.33317 (13)0.31162 (10)0.12474 (10)0.0143 (2)
N20.02391 (13)0.16898 (10)0.05476 (10)0.0162 (2)
N30.27351 (13)0.20590 (10)0.29470 (10)0.0135 (2)
C10.21832 (17)0.43456 (12)0.27885 (13)0.0175 (3)
H1A0.14550.42930.33510.026*
H1B0.18150.50260.21790.026*
H1C0.33300.44960.33070.026*
C20.21024 (15)0.31194 (11)0.20447 (11)0.0137 (3)
C30.03258 (15)0.27995 (11)0.11645 (11)0.0137 (3)
C40.36622 (15)0.12145 (12)0.24864 (12)0.0147 (3)
C50.41829 (16)0.18664 (12)0.14047 (12)0.0167 (3)
H5A0.54070.19660.16380.020*
H5B0.38180.13850.05980.020*
C60.10579 (17)0.36021 (12)0.09906 (13)0.0184 (3)
H60.09580.43600.14460.022*
C70.25965 (17)0.32455 (13)0.01199 (13)0.0206 (3)
H70.35460.37620.00180.025*
C80.26922 (16)0.21144 (13)0.05353 (13)0.0196 (3)
H80.37020.18590.11300.023*
C90.12508 (16)0.13664 (12)0.02886 (12)0.0177 (3)
H90.13230.06010.07270.021*
H1O0.229 (3)0.1711 (18)0.454 (2)0.049 (6)*
H1N0.409 (2)0.3703 (16)0.1556 (15)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (5)0.0199 (5)0.0126 (4)0.0039 (3)0.0067 (4)0.0010 (3)
O20.0196 (5)0.0154 (5)0.0233 (5)0.0026 (3)0.0050 (4)0.0021 (4)
N10.0146 (5)0.0152 (5)0.0135 (5)0.0028 (4)0.0049 (4)0.0007 (4)
N20.0169 (5)0.0145 (5)0.0166 (5)0.0009 (4)0.0040 (4)0.0016 (4)
N30.0147 (5)0.0148 (5)0.0117 (5)0.0010 (4)0.0052 (4)0.0016 (4)
C10.0208 (7)0.0143 (6)0.0172 (6)0.0012 (5)0.0052 (5)0.0020 (5)
C20.0165 (6)0.0132 (6)0.0118 (6)0.0003 (4)0.0046 (5)0.0010 (4)
C30.0162 (6)0.0139 (6)0.0117 (6)0.0012 (4)0.0050 (5)0.0011 (4)
C40.0111 (6)0.0170 (6)0.0139 (6)0.0022 (4)0.0001 (4)0.0033 (5)
C50.0161 (6)0.0186 (6)0.0160 (6)0.0012 (5)0.0057 (5)0.0010 (5)
C60.0211 (7)0.0155 (6)0.0187 (6)0.0025 (5)0.0060 (5)0.0019 (5)
C70.0173 (7)0.0221 (7)0.0216 (7)0.0063 (5)0.0042 (5)0.0027 (5)
C80.0156 (6)0.0236 (7)0.0171 (6)0.0009 (5)0.0008 (5)0.0017 (5)
C90.0194 (7)0.0161 (6)0.0167 (6)0.0022 (5)0.0036 (5)0.0029 (5)
Geometric parameters (Å, º) top
O1—N31.3917 (13)C1—H1C0.9600
O1—H1O0.95 (2)C2—C31.5316 (18)
O2—C41.2250 (16)C3—C61.3891 (17)
N1—C51.4854 (16)C4—C51.5047 (17)
N1—C21.4907 (16)C5—H5A0.9700
N1—H1N0.874 (17)C5—H5B0.9700
N2—C91.3376 (17)C6—C71.3908 (19)
N2—C31.3395 (16)C6—H60.9300
N3—C41.3536 (16)C7—C81.3783 (19)
N3—C21.4744 (16)C7—H70.9300
C1—C21.5139 (17)C8—C91.3863 (19)
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—H90.9300
N3—O1—H1O104.8 (12)C6—C3—C2123.14 (11)
C5—N1—C2108.08 (9)O2—C4—N3126.10 (12)
C5—N1—H1N109.4 (11)O2—C4—C5127.42 (11)
C2—N1—H1N107.8 (10)N3—C4—C5106.47 (11)
C9—N2—C3117.59 (11)N1—C5—C4105.65 (10)
C4—N3—O1119.32 (10)N1—C5—H5A110.6
C4—N3—C2113.53 (10)C4—C5—H5A110.6
O1—N3—C2116.04 (9)N1—C5—H5B110.6
C2—C1—H1A109.5C4—C5—H5B110.6
C2—C1—H1B109.5H5A—C5—H5B108.7
H1A—C1—H1B109.5C3—C6—C7118.43 (12)
C2—C1—H1C109.5C3—C6—H6120.8
H1A—C1—H1C109.5C7—C6—H6120.8
H1B—C1—H1C109.5C8—C7—C6119.00 (12)
N3—C2—N1101.45 (9)C8—C7—H7120.5
N3—C2—C1111.05 (10)C6—C7—H7120.5
N1—C2—C1111.28 (10)C7—C8—C9118.60 (12)
N3—C2—C3109.17 (10)C7—C8—H8120.7
N1—C2—C3109.38 (9)C9—C8—H8120.7
C1—C2—C3113.79 (10)N2—C9—C8123.35 (12)
N2—C3—C6123.02 (12)N2—C9—H9118.3
N2—C3—C2113.82 (10)C8—C9—H9118.3
C4—N3—C2—N123.00 (12)N1—C2—C3—C6120.73 (13)
O1—N3—C2—N1166.82 (9)C1—C2—C3—C64.41 (17)
C4—N3—C2—C1141.35 (11)O1—N3—C4—O221.10 (17)
O1—N3—C2—C174.84 (13)C2—N3—C4—O2163.63 (11)
C4—N3—C2—C392.40 (12)O1—N3—C4—C5160.17 (9)
O1—N3—C2—C351.42 (13)C2—N3—C4—C517.65 (13)
C5—N1—C2—N318.56 (12)C2—N1—C5—C49.58 (12)
C5—N1—C2—C1136.75 (10)O2—C4—C5—N1176.85 (11)
C5—N1—C2—C396.68 (11)N3—C4—C5—N14.45 (13)
C9—N2—C3—C61.26 (18)N2—C3—C6—C71.06 (19)
C9—N2—C3—C2176.93 (11)C2—C3—C6—C7176.96 (11)
N3—C2—C3—N252.74 (13)C3—C6—C7—C80.01 (19)
N1—C2—C3—N257.46 (13)C6—C7—C8—C90.7 (2)
C1—C2—C3—N2177.41 (10)C3—N2—C9—C80.43 (19)
N3—C2—C3—C6129.08 (12)C7—C8—C9—N20.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.95 (2)1.78 (2)2.7287 (16)175.5 (18)
N1—H1N···O2ii0.874 (17)2.135 (18)3.0058 (15)173.7 (15)
C6—H6···O1iii0.932.473.2867 (17)147
C7—H7···O2iii0.932.813.3559 (17)119
C8—H8···O2iv0.932.803.4177 (17)125
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O2
Mr193.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.207 (2), 10.604 (2), 10.642 (2)
β (°) 106.43 (3)
V3)888.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.17 × 0.12
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED, Oxford Diffraction, 2006)
Tmin, Tmax0.976, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6025, 2048, 1772
Rint0.020
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.12
No. of reflections2048
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1i0.95 (2)1.78 (2)2.7287 (16)175.5 (18)
N1—H1N···O2ii0.874 (17)2.135 (18)3.0058 (15)173.7 (15)
C6—H6···O1iii0.932.473.2867 (17)146.6
C7—H7···O2iii0.932.813.3559 (17)118.8
C8—H8···O2iv0.932.803.4177 (17)125.1
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y, z.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/42–2008).

References

First citationCunningham, K. G., Newbold, G. T., Spring, F. S. & Stark, J. (1949). J. Chem. Soc. pp. 2091–2096.  CrossRef Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, p. 13. International Union of Crystallography Monographs on Crystallography. New York: Oxford Science Publications.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.  Web of Science CrossRef Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationKrämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314.  Google Scholar
First citationKurzak, B., Kozłowski, H. & Farkas, E. (1992). Coord. Chem. Rev. 114, 169–188.  CrossRef CAS Web of Science Google Scholar
First citationLipczynska-Kochany, E. (1991). Chem. Rev. 91, 477–495.  CrossRef CAS Web of Science Google Scholar
First citationMarson, C. M. & Pucci, S. (2004). Tetrahedron Lett. 45, 9007–9012.  Web of Science CrossRef CAS Google Scholar
First citationMiller, M. J. (1989). Chem. Rev. 89, 1563-1590.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationVystorop, I. V., Lyssenko, K. A. & Kostyanovsky, R. G. (2002). Mendeleev Commun. pp. 85–86.  Web of Science CSD CrossRef Google Scholar
First citationVystorop, I. V., Lyssenko, K. A., Kostyanovsky, R. G. & Remir, G. (2003). Mendeleev Commun. pp. 116–117.  Web of Science CSD CrossRef Google Scholar
First citationWhittaker, M., Floyd, C. D., Brown, P. & Gearing, A. J. H. (1999). Chem. Rev. 99, 2735–2762.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages o2123-o2124
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds