organic compounds
N-(4-Methoxyphenyl)pivalamide
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com
In the title molecule, C12H17NO2, the amide (N—C=O) plane is oriented at an angle of 33.9 (1)° with respect to the aromatic ring. This is accompanied by an intramolecular C—H⋯O hydrogen bond. The methoxy group lies almost in the plane of the benzene ring [C–O–C–C torsion angle = 2.7 (2)°]. In the intermolecular N—H⋯O hydrogen bonds link the molecules into chains along [010].
Related literature
For details of the biological activity of benzanilides, see: Olsson et al. (2002); Lindgren et al. (2001); Calderone et al. (2006). For the use of benzamides in organic synthesis, see: Zhichkin et al. (2007); Beccalli et al. (2005). For related structures see: Gowda et al. (2007a,b); Saeed et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809029535/fl2254sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809029535/fl2254Isup2.hkl
Pivaloyl chloride (1 mmol) in CHCl3 was treated with 4-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (84%) as white needles: Anal. calcd. for C12H17NO2: C 59.54, H 8.27, N 6.76%; found: 59.51, H 8.31, N 6.82%.
Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.88 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq / Neq) and 1.5U(Cmethyl). All methyl hydrogen atoms were allowed to rotate but not to tip.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H17NO2 | F(000) = 896 |
Mr = 207.27 | Dx = 1.165 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 778 reflections |
a = 9.5547 (13) Å | θ = 2.7–27.0° |
b = 10.0657 (15) Å | µ = 0.08 mm−1 |
c = 24.575 (4) Å | T = 120 K |
V = 2363.5 (6) Å3 | Block, colourless |
Z = 8 | 0.40 × 0.25 × 0.20 mm |
Bruker SMART APEX diffractometer | 2817 independent reflections |
Radiation source: sealed tube | 2158 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ϕ and ω scans | θmax = 27.9°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→12 |
Tmin = 0.969, Tmax = 0.984 | k = −13→13 |
17959 measured reflections | l = −31→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0527P)2 + 0.8944P] where P = (Fo2 + 2Fc2)/3 |
2817 reflections | (Δ/σ)max < 0.001 |
137 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C12H17NO2 | V = 2363.5 (6) Å3 |
Mr = 207.27 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 9.5547 (13) Å | µ = 0.08 mm−1 |
b = 10.0657 (15) Å | T = 120 K |
c = 24.575 (4) Å | 0.40 × 0.25 × 0.20 mm |
Bruker SMART APEX diffractometer | 2817 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2158 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.984 | Rint = 0.053 |
17959 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.32 e Å−3 |
2817 reflections | Δρmin = −0.20 e Å−3 |
137 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.23114 (10) | 0.78822 (9) | 0.15214 (4) | 0.0261 (2) | |
O2 | −0.30713 (11) | 0.99245 (12) | 0.02439 (5) | 0.0353 (3) | |
N1 | 0.18414 (12) | 1.00795 (11) | 0.14651 (5) | 0.0221 (3) | |
H1A | 0.2122 | 1.0875 | 0.1566 | 0.027* | |
C1 | 0.26370 (14) | 0.90357 (13) | 0.16238 (5) | 0.0196 (3) | |
C2 | 0.05959 (14) | 1.00104 (13) | 0.11504 (5) | 0.0203 (3) | |
C3 | −0.03786 (15) | 0.89929 (13) | 0.12087 (6) | 0.0233 (3) | |
H3A | −0.0213 | 0.8293 | 0.1460 | 0.028* | |
C4 | −0.15869 (15) | 0.90042 (14) | 0.09003 (6) | 0.0264 (3) | |
H4A | −0.2249 | 0.8307 | 0.0940 | 0.032* | |
C5 | −0.18439 (15) | 1.00250 (15) | 0.05324 (6) | 0.0253 (3) | |
C6 | −0.08911 (16) | 1.10480 (14) | 0.04785 (6) | 0.0270 (3) | |
H6A | −0.1068 | 1.1757 | 0.0233 | 0.032* | |
C7 | 0.03299 (15) | 1.10322 (13) | 0.07865 (6) | 0.0249 (3) | |
H7A | 0.0991 | 1.1731 | 0.0747 | 0.030* | |
C8 | −0.33901 (18) | 1.09944 (18) | −0.01185 (7) | 0.0375 (4) | |
H8A | −0.3448 | 1.1826 | 0.0088 | 0.056* | |
H8B | −0.4289 | 1.0823 | −0.0298 | 0.056* | |
H8C | −0.2652 | 1.1067 | −0.0394 | 0.056* | |
C9 | 0.39771 (15) | 0.93998 (13) | 0.19354 (6) | 0.0227 (3) | |
C10 | 0.36095 (17) | 1.02511 (15) | 0.24320 (7) | 0.0313 (4) | |
H10A | 0.4468 | 1.0479 | 0.2629 | 0.047* | |
H10B | 0.2983 | 0.9752 | 0.2672 | 0.047* | |
H10C | 0.3143 | 1.1067 | 0.2312 | 0.047* | |
C11 | 0.46851 (17) | 0.81265 (15) | 0.21301 (7) | 0.0337 (4) | |
H11A | 0.5542 | 0.8351 | 0.2329 | 0.050* | |
H11B | 0.4920 | 0.7571 | 0.1816 | 0.050* | |
H11C | 0.4048 | 0.7640 | 0.2371 | 0.050* | |
C12 | 0.49651 (16) | 1.01588 (16) | 0.15543 (7) | 0.0328 (4) | |
H12A | 0.5824 | 1.0391 | 0.1751 | 0.049* | |
H12B | 0.4504 | 1.0972 | 0.1428 | 0.049* | |
H12C | 0.5199 | 0.9599 | 0.1241 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0257 (5) | 0.0146 (5) | 0.0380 (6) | −0.0001 (4) | −0.0074 (4) | −0.0020 (4) |
O2 | 0.0262 (6) | 0.0441 (7) | 0.0356 (6) | −0.0021 (5) | −0.0122 (5) | 0.0052 (5) |
N1 | 0.0226 (6) | 0.0141 (5) | 0.0297 (6) | −0.0008 (4) | −0.0065 (5) | −0.0017 (5) |
C1 | 0.0211 (7) | 0.0177 (6) | 0.0201 (6) | 0.0008 (5) | −0.0003 (5) | 0.0001 (5) |
C2 | 0.0201 (7) | 0.0184 (6) | 0.0223 (6) | 0.0026 (5) | −0.0026 (5) | −0.0024 (5) |
C3 | 0.0237 (7) | 0.0197 (6) | 0.0266 (7) | 0.0008 (5) | −0.0012 (6) | 0.0018 (5) |
C4 | 0.0226 (7) | 0.0253 (7) | 0.0315 (8) | −0.0035 (6) | −0.0006 (6) | −0.0012 (6) |
C5 | 0.0195 (7) | 0.0324 (8) | 0.0240 (7) | 0.0026 (6) | −0.0019 (5) | −0.0040 (6) |
C6 | 0.0275 (8) | 0.0269 (7) | 0.0267 (8) | 0.0040 (6) | −0.0023 (6) | 0.0056 (6) |
C7 | 0.0241 (7) | 0.0201 (7) | 0.0307 (8) | −0.0009 (5) | −0.0029 (6) | 0.0026 (6) |
C8 | 0.0318 (9) | 0.0506 (10) | 0.0301 (9) | 0.0057 (8) | −0.0106 (7) | 0.0047 (7) |
C9 | 0.0230 (7) | 0.0172 (6) | 0.0278 (7) | 0.0001 (5) | −0.0058 (6) | 0.0009 (5) |
C10 | 0.0346 (9) | 0.0283 (7) | 0.0310 (8) | −0.0007 (6) | −0.0095 (7) | −0.0052 (6) |
C11 | 0.0326 (9) | 0.0231 (7) | 0.0453 (10) | 0.0035 (6) | −0.0177 (7) | 0.0017 (7) |
C12 | 0.0209 (7) | 0.0365 (8) | 0.0409 (9) | −0.0025 (6) | −0.0036 (7) | 0.0071 (7) |
O1—C1 | 1.2282 (16) | C7—H7A | 0.9500 |
O2—C5 | 1.3741 (17) | C8—H8A | 0.9800 |
O2—C8 | 1.4304 (19) | C8—H8B | 0.9800 |
N1—C1 | 1.3542 (17) | C8—H8C | 0.9800 |
N1—C2 | 1.4209 (17) | C9—C11 | 1.5262 (19) |
N1—H1A | 0.8800 | C9—C10 | 1.532 (2) |
C1—C9 | 1.5362 (19) | C9—C12 | 1.534 (2) |
C2—C7 | 1.3866 (19) | C10—H10A | 0.9800 |
C2—C3 | 1.3916 (19) | C10—H10B | 0.9800 |
C3—C4 | 1.381 (2) | C10—H10C | 0.9800 |
C3—H3A | 0.9500 | C11—H11A | 0.9800 |
C4—C5 | 1.391 (2) | C11—H11B | 0.9800 |
C4—H4A | 0.9500 | C11—H11C | 0.9800 |
C5—C6 | 1.381 (2) | C12—H12A | 0.9800 |
C6—C7 | 1.391 (2) | C12—H12B | 0.9800 |
C6—H6A | 0.9500 | C12—H12C | 0.9800 |
C5—O2—C8 | 116.59 (12) | O2—C8—H8C | 109.5 |
C1—N1—C2 | 126.08 (11) | H8A—C8—H8C | 109.5 |
C1—N1—H1A | 117.0 | H8B—C8—H8C | 109.5 |
C2—N1—H1A | 117.0 | C11—C9—C10 | 108.76 (12) |
O1—C1—N1 | 122.16 (13) | C11—C9—C12 | 109.69 (13) |
O1—C1—C9 | 122.60 (12) | C10—C9—C12 | 110.42 (12) |
N1—C1—C9 | 115.24 (11) | C11—C9—C1 | 108.99 (11) |
C7—C2—C3 | 119.32 (13) | C10—C9—C1 | 109.84 (12) |
C7—C2—N1 | 117.92 (12) | C12—C9—C1 | 109.12 (11) |
C3—C2—N1 | 122.71 (12) | C9—C10—H10A | 109.5 |
C4—C3—C2 | 119.79 (13) | C9—C10—H10B | 109.5 |
C4—C3—H3A | 120.1 | H10A—C10—H10B | 109.5 |
C2—C3—H3A | 120.1 | C9—C10—H10C | 109.5 |
C3—C4—C5 | 120.70 (13) | H10A—C10—H10C | 109.5 |
C3—C4—H4A | 119.6 | H10B—C10—H10C | 109.5 |
C5—C4—H4A | 119.6 | C9—C11—H11A | 109.5 |
O2—C5—C6 | 124.62 (13) | C9—C11—H11B | 109.5 |
O2—C5—C4 | 115.58 (13) | H11A—C11—H11B | 109.5 |
C6—C5—C4 | 119.80 (13) | C9—C11—H11C | 109.5 |
C5—C6—C7 | 119.50 (13) | H11A—C11—H11C | 109.5 |
C5—C6—H6A | 120.3 | H11B—C11—H11C | 109.5 |
C7—C6—H6A | 120.3 | C9—C12—H12A | 109.5 |
C2—C7—C6 | 120.88 (13) | C9—C12—H12B | 109.5 |
C2—C7—H7A | 119.6 | H12A—C12—H12B | 109.5 |
C6—C7—H7A | 119.6 | C9—C12—H12C | 109.5 |
O2—C8—H8A | 109.5 | H12A—C12—H12C | 109.5 |
O2—C8—H8B | 109.5 | H12B—C12—H12C | 109.5 |
H8A—C8—H8B | 109.5 | ||
C2—N1—C1—O1 | −2.7 (2) | O2—C5—C6—C7 | −178.91 (13) |
C2—N1—C1—C9 | 176.75 (12) | C4—C5—C6—C7 | 1.2 (2) |
C1—N1—C2—C7 | −145.49 (14) | C3—C2—C7—C6 | −0.3 (2) |
C1—N1—C2—C3 | 37.0 (2) | N1—C2—C7—C6 | −177.94 (13) |
C7—C2—C3—C4 | 0.7 (2) | C5—C6—C7—C2 | −0.6 (2) |
N1—C2—C3—C4 | 178.23 (13) | O1—C1—C9—C11 | −5.65 (19) |
C2—C3—C4—C5 | −0.2 (2) | N1—C1—C9—C11 | 174.89 (13) |
C8—O2—C5—C6 | −2.7 (2) | O1—C1—C9—C10 | −124.71 (14) |
C8—O2—C5—C4 | 177.17 (13) | N1—C1—C9—C10 | 55.83 (16) |
C3—C4—C5—O2 | 179.31 (13) | O1—C1—C9—C12 | 114.12 (15) |
C3—C4—C5—C6 | −0.8 (2) | N1—C1—C9—C12 | −65.34 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.88 | 2.09 | 2.9382 (15) | 160 |
C3—H3A···O1 | 0.95 | 2.45 | 2.9063 (17) | 109 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO2 |
Mr | 207.27 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 9.5547 (13), 10.0657 (15), 24.575 (4) |
V (Å3) | 2363.5 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.969, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17959, 2817, 2158 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.120, 1.02 |
No. of reflections | 2817 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.20 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.88 | 2.09 | 2.9382 (15) | 160.3 |
C3—H3A···O1 | 0.95 | 2.45 | 2.9063 (17) | 109.2 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program (DFNS/2009-36).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68. Web of Science CrossRef CAS Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767. Web of Science CrossRef PubMed CAS Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2329–o2330. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2327–o2328. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277. Web of Science CrossRef PubMed CAS Google Scholar
Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978. Web of Science CrossRef PubMed CAS Google Scholar
Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005).
The molecular structure of the title compound (Fig. 1)is closely related to two other compounds (Gowda et al., 2007a; 2007b) that exhiibt a methyl or chloro ligand instead of the methoxy group (CCDC refcodes HIDVOG and QIFKAS (Allen, 2002)), respectively. The dihedral angles between the benzene ring and the amide group are 33.9 (1)° for the title molecule and 32.8 (1)° for HIDVOG and 31.3 (1)° for QIFKAS, respectively. The C8–O2–C5–C6 torsion angle of 2.7 (2)° shows almost in-plane orientation of the methoxy group with respect to the aromatic ring. In the cystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the direction (Fig. 2). A somewhat longer intramolecular C–H···O hydrogen bond is associated with the twist of the amide plane.