organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­oxy­phen­yl)pivalamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 6 July 2009; accepted 24 July 2009; online 8 August 2009)

In the title mol­ecule, C12H17NO2, the amide (N—C=O) plane is oriented at an angle of 33.9 (1)° with respect to the aromatic ring. This is accompanied by an intra­molecular C—H⋯O hydrogen bond. The meth­oxy group lies almost in the plane of the benzene ring [C–O–C–C torsion angle = 2.7 (2)°]. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along [010].

Related literature

For details of the biological activity of benzanilides, see: Olsson et al. (2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]); Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]). For the use of benzamides in organic synthesis, see: Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61-68.]). For related structures see: Gowda et al. (2007a[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2327-o2328.],b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2329-o2330.]); Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO2

  • Mr = 207.27

  • Orthorhombic, P b c a

  • a = 9.5547 (13) Å

  • b = 10.0657 (15) Å

  • c = 24.575 (4) Å

  • V = 2363.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.40 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.984

  • 17959 measured reflections

  • 2817 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.02

  • 2817 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.09 2.9382 (15) 160
C3—H3A⋯O1 0.95 2.45 2.9063 (17) 109
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor of activated T cells activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). N-Alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-Acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005).

The molecular structure of the title compound (Fig. 1)is closely related to two other compounds (Gowda et al., 2007a; 2007b) that exhiibt a methyl or chloro ligand instead of the methoxy group (CCDC refcodes HIDVOG and QIFKAS (Allen, 2002)), respectively. The dihedral angles between the benzene ring and the amide group are 33.9 (1)° for the title molecule and 32.8 (1)° for HIDVOG and 31.3 (1)° for QIFKAS, respectively. The C8–O2–C5–C6 torsion angle of 2.7 (2)° shows almost in-plane orientation of the methoxy group with respect to the aromatic ring. In the cystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the direction (Fig. 2). A somewhat longer intramolecular C–H···O hydrogen bond is associated with the twist of the amide plane.

Related literature top

For details of the biological activity of benzanilides, see: Olsson et al. (2002); Lindgren et al. (2001); Calderone et al. (2006). For the use of benzamides in organic synthesis, see: Zhichkin et al. (2007); Beccalli et al. (2005). For related structures see: Gowda et al. (2007a,b); Saeed et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Pivaloyl chloride (1 mmol) in CHCl3 was treated with 4-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (84%) as white needles: Anal. calcd. for C12H17NO2: C 59.54, H 8.27, N 6.76%; found: 59.51, H 8.31, N 6.82%.

Refinement top

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.88 Å) atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq / Neq) and 1.5U(Cmethyl). All methyl hydrogen atoms were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.
N-(4-Methoxyphenyl)pivalamide top
Crystal data top
C12H17NO2F(000) = 896
Mr = 207.27Dx = 1.165 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 778 reflections
a = 9.5547 (13) Åθ = 2.7–27.0°
b = 10.0657 (15) ŵ = 0.08 mm1
c = 24.575 (4) ÅT = 120 K
V = 2363.5 (6) Å3Block, colourless
Z = 80.40 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2817 independent reflections
Radiation source: sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 912
Tmin = 0.969, Tmax = 0.984k = 1313
17959 measured reflectionsl = 3132
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.8944P]
where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H17NO2V = 2363.5 (6) Å3
Mr = 207.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.5547 (13) ŵ = 0.08 mm1
b = 10.0657 (15) ÅT = 120 K
c = 24.575 (4) Å0.40 × 0.25 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2817 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2158 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.984Rint = 0.053
17959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
2817 reflectionsΔρmin = 0.20 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23114 (10)0.78822 (9)0.15214 (4)0.0261 (2)
O20.30713 (11)0.99245 (12)0.02439 (5)0.0353 (3)
N10.18414 (12)1.00795 (11)0.14651 (5)0.0221 (3)
H1A0.21221.08750.15660.027*
C10.26370 (14)0.90357 (13)0.16238 (5)0.0196 (3)
C20.05959 (14)1.00104 (13)0.11504 (5)0.0203 (3)
C30.03786 (15)0.89929 (13)0.12087 (6)0.0233 (3)
H3A0.02130.82930.14600.028*
C40.15869 (15)0.90042 (14)0.09003 (6)0.0264 (3)
H4A0.22490.83070.09400.032*
C50.18439 (15)1.00250 (15)0.05324 (6)0.0253 (3)
C60.08911 (16)1.10480 (14)0.04785 (6)0.0270 (3)
H6A0.10681.17570.02330.032*
C70.03299 (15)1.10322 (13)0.07865 (6)0.0249 (3)
H7A0.09911.17310.07470.030*
C80.33901 (18)1.09944 (18)0.01185 (7)0.0375 (4)
H8A0.34481.18260.00880.056*
H8B0.42891.08230.02980.056*
H8C0.26521.10670.03940.056*
C90.39771 (15)0.93998 (13)0.19354 (6)0.0227 (3)
C100.36095 (17)1.02511 (15)0.24320 (7)0.0313 (4)
H10A0.44681.04790.26290.047*
H10B0.29830.97520.26720.047*
H10C0.31431.10670.23120.047*
C110.46851 (17)0.81265 (15)0.21301 (7)0.0337 (4)
H11A0.55420.83510.23290.050*
H11B0.49200.75710.18160.050*
H11C0.40480.76400.23710.050*
C120.49651 (16)1.01588 (16)0.15543 (7)0.0328 (4)
H12A0.58241.03910.17510.049*
H12B0.45041.09720.14280.049*
H12C0.51990.95990.12410.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (5)0.0146 (5)0.0380 (6)0.0001 (4)0.0074 (4)0.0020 (4)
O20.0262 (6)0.0441 (7)0.0356 (6)0.0021 (5)0.0122 (5)0.0052 (5)
N10.0226 (6)0.0141 (5)0.0297 (6)0.0008 (4)0.0065 (5)0.0017 (5)
C10.0211 (7)0.0177 (6)0.0201 (6)0.0008 (5)0.0003 (5)0.0001 (5)
C20.0201 (7)0.0184 (6)0.0223 (6)0.0026 (5)0.0026 (5)0.0024 (5)
C30.0237 (7)0.0197 (6)0.0266 (7)0.0008 (5)0.0012 (6)0.0018 (5)
C40.0226 (7)0.0253 (7)0.0315 (8)0.0035 (6)0.0006 (6)0.0012 (6)
C50.0195 (7)0.0324 (8)0.0240 (7)0.0026 (6)0.0019 (5)0.0040 (6)
C60.0275 (8)0.0269 (7)0.0267 (8)0.0040 (6)0.0023 (6)0.0056 (6)
C70.0241 (7)0.0201 (7)0.0307 (8)0.0009 (5)0.0029 (6)0.0026 (6)
C80.0318 (9)0.0506 (10)0.0301 (9)0.0057 (8)0.0106 (7)0.0047 (7)
C90.0230 (7)0.0172 (6)0.0278 (7)0.0001 (5)0.0058 (6)0.0009 (5)
C100.0346 (9)0.0283 (7)0.0310 (8)0.0007 (6)0.0095 (7)0.0052 (6)
C110.0326 (9)0.0231 (7)0.0453 (10)0.0035 (6)0.0177 (7)0.0017 (7)
C120.0209 (7)0.0365 (8)0.0409 (9)0.0025 (6)0.0036 (7)0.0071 (7)
Geometric parameters (Å, º) top
O1—C11.2282 (16)C7—H7A0.9500
O2—C51.3741 (17)C8—H8A0.9800
O2—C81.4304 (19)C8—H8B0.9800
N1—C11.3542 (17)C8—H8C0.9800
N1—C21.4209 (17)C9—C111.5262 (19)
N1—H1A0.8800C9—C101.532 (2)
C1—C91.5362 (19)C9—C121.534 (2)
C2—C71.3866 (19)C10—H10A0.9800
C2—C31.3916 (19)C10—H10B0.9800
C3—C41.381 (2)C10—H10C0.9800
C3—H3A0.9500C11—H11A0.9800
C4—C51.391 (2)C11—H11B0.9800
C4—H4A0.9500C11—H11C0.9800
C5—C61.381 (2)C12—H12A0.9800
C6—C71.391 (2)C12—H12B0.9800
C6—H6A0.9500C12—H12C0.9800
C5—O2—C8116.59 (12)O2—C8—H8C109.5
C1—N1—C2126.08 (11)H8A—C8—H8C109.5
C1—N1—H1A117.0H8B—C8—H8C109.5
C2—N1—H1A117.0C11—C9—C10108.76 (12)
O1—C1—N1122.16 (13)C11—C9—C12109.69 (13)
O1—C1—C9122.60 (12)C10—C9—C12110.42 (12)
N1—C1—C9115.24 (11)C11—C9—C1108.99 (11)
C7—C2—C3119.32 (13)C10—C9—C1109.84 (12)
C7—C2—N1117.92 (12)C12—C9—C1109.12 (11)
C3—C2—N1122.71 (12)C9—C10—H10A109.5
C4—C3—C2119.79 (13)C9—C10—H10B109.5
C4—C3—H3A120.1H10A—C10—H10B109.5
C2—C3—H3A120.1C9—C10—H10C109.5
C3—C4—C5120.70 (13)H10A—C10—H10C109.5
C3—C4—H4A119.6H10B—C10—H10C109.5
C5—C4—H4A119.6C9—C11—H11A109.5
O2—C5—C6124.62 (13)C9—C11—H11B109.5
O2—C5—C4115.58 (13)H11A—C11—H11B109.5
C6—C5—C4119.80 (13)C9—C11—H11C109.5
C5—C6—C7119.50 (13)H11A—C11—H11C109.5
C5—C6—H6A120.3H11B—C11—H11C109.5
C7—C6—H6A120.3C9—C12—H12A109.5
C2—C7—C6120.88 (13)C9—C12—H12B109.5
C2—C7—H7A119.6H12A—C12—H12B109.5
C6—C7—H7A119.6C9—C12—H12C109.5
O2—C8—H8A109.5H12A—C12—H12C109.5
O2—C8—H8B109.5H12B—C12—H12C109.5
H8A—C8—H8B109.5
C2—N1—C1—O12.7 (2)O2—C5—C6—C7178.91 (13)
C2—N1—C1—C9176.75 (12)C4—C5—C6—C71.2 (2)
C1—N1—C2—C7145.49 (14)C3—C2—C7—C60.3 (2)
C1—N1—C2—C337.0 (2)N1—C2—C7—C6177.94 (13)
C7—C2—C3—C40.7 (2)C5—C6—C7—C20.6 (2)
N1—C2—C3—C4178.23 (13)O1—C1—C9—C115.65 (19)
C2—C3—C4—C50.2 (2)N1—C1—C9—C11174.89 (13)
C8—O2—C5—C62.7 (2)O1—C1—C9—C10124.71 (14)
C8—O2—C5—C4177.17 (13)N1—C1—C9—C1055.83 (16)
C3—C4—C5—O2179.31 (13)O1—C1—C9—C12114.12 (15)
C3—C4—C5—C60.8 (2)N1—C1—C9—C1265.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.092.9382 (15)160
C3—H3A···O10.952.452.9063 (17)109
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H17NO2
Mr207.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)9.5547 (13), 10.0657 (15), 24.575 (4)
V3)2363.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.969, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17959, 2817, 2158
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.02
No. of reflections2817
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.092.9382 (15)160.3
C3—H3A···O10.952.452.9063 (17)109.2
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

AS gratefully acknowledges a research grant from Quaid-i-Azam University Islamabad under the URF program (DFNS/2009-36).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2329–o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2327–o2328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds