organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-2-(hy­droxy­imino)acetamide

aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road No. 2999 Songjiang, Shanghai 201620, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com

(Received 8 July 2009; accepted 21 August 2009; online 26 August 2009)

The title compound, C8H7ClN2O2, is an inter­mediate in the synthesis of 5-chloro­isatin, which can be further transformed to 5-chloro-2-indolinone via a Wolff–Kishne reduction. The C2N acetamide plane forms a dihedral angle of 6.3 (3)° with the benzene ring. An intra­molecular C—H⋯O inter­action results in the formation of a six-membered ring. In the crystal, inter­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds link the mol­ecules into multimers, forming sheets.

Related literature

For related structures, see: Miravitlles et al. (1974[Miravitlles, C., Plana, F., Brianso, J. L. & Font-Altaba, M. (1974). Cryst. Struct. Commun. 3, 439-442.]); Brianso et al. (1973[Brianso, J. L., Miravitlles, C., Font-Altaba, M., Declercq, J. P. & Germain, G. (1973). Cryst. Struct. Commun. 2, 319-321.]); Liu et al. (2006[Liu, S., Ma, M., Zhou, H., Li, Y. & Han, L. (2006). Acta Cryst. E62, o316-o317.]). For the synthesis, see: Lai et al. (2003[Lai, Y., Zhang, Y. & Li, Y. (2003). Zhongguo Yaowu Huaxue Zazhi, 13, 99-101.]); Simon et al. (1997[Simon, J. G., Jose, C. T., Alexandre, A. F., Rosangela, B. S. & Angelo, C. P. (1997). Tetrahedron Lett. 38, 1501-1504.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7ClN2O2

  • Mr = 198.61

  • Orthorhombic, P b c a

  • a = 10.101 (2) Å

  • b = 8.9150 (18) Å

  • c = 20.009 (4) Å

  • V = 1801.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.892, Tmax = 0.962

  • 3213 measured reflections

  • 1639 independent reflections

  • 1250 reflections with I > 2σ(I)

  • Rint = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.153

  • S = 1.00

  • 1639 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.52 3.115 (3) 127
N1—H1A⋯N2i 0.86 2.31 3.140 (3) 163
O2—H2A⋯O1ii 0.82 1.98 2.785 (3) 167
C5—H5A⋯O1 0.93 2.32 2.918 (3) 122
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound is an important intermediate in the synthesis of 5-chloro-isatin,which can be further transformed to 5-chloro-2-indolinone via a Wolff-Kishne reduction.

As part of our ongoing studies on phenyl-substituted-2-indolinone(Lai et al., 2003; Simon et al.,1997), the crystal structure of (E)—N-(2-chlorophenyl)-2-(hydroxyimino)acetamide and (E)-2-(hydroxyimino)-N-phenylacetamide have been reported(Miravitlles et al.,1974; Brianso et al.,1973; Liu et al.,2006), we report herein the crystal structure of the title compound.

In the title compound (Fig 1), the bond lengths and angles are within normal ranges. The central acetamide plane N1/C7/O1/C8 forms a dihedral angle of 6.3 (3)° with the phenyl ring. An intramolecular C—H···O interaction results in the formation of a six-membered ring. In the crystal packiing, intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into multimers (Fig. 2), ithat may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Miravitlles et al. (1974); Brianso et al. (1973); Liu et al. (2006). For the synthesis, see: Lai et al. (2003); Simon et al. (1997).

Experimental top

85 g (0.06 mol) sodium sulfate and 300 ml water were added to a 1000 ml 3 mouthed flask, mixed until the sodium sulfate dissolved following which a saturated solution of 18 g (0.11 mol) chloral hydrate was added. While stirring, a mixture of 12.7 g(0.1 mol) p-chloroaniline, 12 ml hydrochloric acid and 100 ml water was added dropwise causing a white precipitate. Then 22 g(0.32 mol) hydroxylamine hydrochloride was added and the mixture was heated to 348k. After 5 h, a light yellow precipitate appeared which was filtered and washed with water, dried and recrystallized from ethanol (yield 90.2%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield; 90%, m.p. 443 K).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H=0.86Å (for NH) and C—H =0.93Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O,N), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4(Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
N-(4-Chlorophenyl)-2-(hydroxyimino)acetamide top
Crystal data top
C8H7ClN2O2Dx = 1.464 Mg m3
Mr = 198.61Melting point: 443 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.101 (2) Åθ = 10–14°
b = 8.9150 (18) ŵ = 0.39 mm1
c = 20.009 (4) ÅT = 293 K
V = 1801.8 (6) Å3Block, yellow
Z = 80.30 × 0.20 × 0.10 mm
F(000) = 816
Data collection top
Enraf–Nonius CAD-4
diffractometer
1250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.892, Tmax = 0.962l = 2424
3213 measured reflections3 standard reflections every 200 reflections
1639 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.1P)2 + 0.25P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1639 reflectionsΔρmax = 0.40 e Å3
119 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C8H7ClN2O2V = 1801.8 (6) Å3
Mr = 198.61Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.101 (2) ŵ = 0.39 mm1
b = 8.9150 (18) ÅT = 293 K
c = 20.009 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1250 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.892, Tmax = 0.9623 standard reflections every 200 reflections
3213 measured reflections intensity decay: 1%
1639 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
1639 reflectionsΔρmin = 0.36 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.26935 (10)0.17533 (11)0.78148 (5)0.0896 (4)
O10.65722 (17)0.19066 (16)0.54941 (10)0.0497 (5)
N10.62352 (19)0.0637 (2)0.55162 (10)0.0425 (5)
H1A0.64420.14420.53040.051*
C10.3696 (3)0.1410 (3)0.71252 (15)0.0565 (7)
O20.96195 (19)0.0993 (2)0.42075 (9)0.0572 (6)
H2A1.02640.15460.42460.086*
N20.86646 (19)0.1394 (2)0.46737 (10)0.0435 (5)
C20.4060 (3)0.2563 (3)0.67015 (13)0.0571 (7)
H2C0.37490.35310.67750.068*
C30.4883 (2)0.2267 (3)0.61720 (13)0.0473 (6)
H3A0.51370.30440.58890.057*
C40.5342 (2)0.0825 (2)0.60529 (12)0.0392 (6)
C50.4961 (3)0.0326 (3)0.64785 (13)0.0572 (8)
H5A0.52600.12980.64050.069*
C60.4138 (3)0.0022 (3)0.70111 (15)0.0610 (8)
H6A0.38810.07940.72950.073*
C70.6807 (2)0.0630 (2)0.52908 (12)0.0393 (6)
C80.7835 (2)0.0349 (3)0.47759 (12)0.0415 (6)
H8A0.78700.05490.45400.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0956 (7)0.0920 (7)0.0814 (6)0.0178 (5)0.0434 (5)0.0147 (5)
O10.0536 (11)0.0290 (9)0.0667 (11)0.0014 (7)0.0034 (9)0.0062 (8)
N10.0494 (11)0.0265 (9)0.0518 (12)0.0012 (8)0.0038 (10)0.0060 (8)
C10.0499 (15)0.0637 (17)0.0559 (16)0.0043 (13)0.0082 (12)0.0062 (13)
O20.0517 (11)0.0475 (10)0.0725 (13)0.0092 (9)0.0147 (10)0.0054 (9)
N20.0431 (11)0.0347 (10)0.0526 (12)0.0002 (9)0.0000 (9)0.0023 (9)
C20.0609 (17)0.0482 (14)0.0621 (17)0.0131 (13)0.0106 (14)0.0045 (13)
C30.0477 (14)0.0404 (13)0.0538 (14)0.0021 (11)0.0040 (12)0.0088 (11)
C40.0387 (12)0.0340 (12)0.0449 (12)0.0032 (10)0.0013 (10)0.0016 (10)
C50.0754 (19)0.0340 (13)0.0621 (16)0.0052 (13)0.0115 (15)0.0025 (12)
C60.0713 (19)0.0507 (15)0.0611 (16)0.0100 (14)0.0161 (14)0.0107 (14)
C70.0394 (12)0.0311 (11)0.0472 (13)0.0000 (10)0.0072 (11)0.0024 (9)
C80.0453 (13)0.0303 (11)0.0491 (13)0.0018 (10)0.0003 (10)0.0048 (10)
Geometric parameters (Å, º) top
Cl—C11.739 (3)C2—C31.373 (3)
O1—C71.232 (3)C2—H2C0.9300
N1—C71.346 (3)C3—C41.387 (3)
N1—C41.412 (3)C3—H3A0.9300
N1—H1A0.8600C4—C51.388 (3)
C1—C61.371 (4)C5—C61.378 (4)
C1—C21.382 (4)C5—H5A0.9300
O2—N21.389 (3)C6—H6A0.9300
O2—H2A0.8200C7—C81.484 (3)
N2—C81.270 (3)C8—H8A0.9300
C7—N1—C4128.95 (19)C3—C4—N1117.01 (19)
C7—N1—H1A115.5C5—C4—N1123.8 (2)
C4—N1—H1A115.5C6—C5—C4119.8 (2)
C6—C1—C2120.2 (3)C6—C5—H5A120.1
C6—C1—Cl119.1 (2)C4—C5—H5A120.1
C2—C1—Cl120.7 (2)C1—C6—C5120.5 (2)
N2—O2—H2A109.5C1—C6—H6A119.7
C8—N2—O2112.20 (19)C5—C6—H6A119.7
C3—C2—C1119.5 (3)O1—C7—N1125.6 (2)
C3—C2—H2C120.3O1—C7—C8121.3 (2)
C1—C2—H2C120.3N1—C7—C8113.04 (19)
C2—C3—C4120.9 (2)N2—C8—C7116.7 (2)
C2—C3—H3A119.6N2—C8—H8A121.6
C4—C3—H3A119.6C7—C8—H8A121.6
C3—C4—C5119.1 (2)
C6—C1—C2—C31.0 (4)C2—C1—C6—C50.8 (5)
Cl—C1—C2—C3178.1 (2)Cl—C1—C6—C5178.4 (2)
C1—C2—C3—C40.7 (4)C4—C5—C6—C10.2 (4)
C2—C3—C4—C50.2 (4)C4—N1—C7—O15.3 (4)
C2—C3—C4—N1177.1 (2)C4—N1—C7—C8171.9 (2)
C7—N1—C4—C3179.0 (2)O2—N2—C8—C7177.10 (19)
C7—N1—C4—C54.3 (4)O1—C7—C8—N216.5 (3)
C3—C4—C5—C60.1 (4)N1—C7—C8—N2160.9 (2)
N1—C4—C5—C6176.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.523.115 (3)127
N1—H1A···N2i0.862.313.140 (3)163
O2—H2A···O1ii0.821.982.785 (3)167
C5—H5A···O10.932.322.918 (3)122
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H7ClN2O2
Mr198.61
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.101 (2), 8.9150 (18), 20.009 (4)
V3)1801.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.892, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
3213, 1639, 1250
Rint0.031
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.153, 1.00
No. of reflections1639
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4(Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86002.52003.115 (3)127.00
N1—H1A···N2i0.86002.31003.140 (3)163.00
O2—H2A···O1ii0.82001.98002.785 (3)167.00
C5—H5A···O10.93002.32002.918 (3)122.00
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis of Nanjing University for support.

References

First citationBrianso, J. L., Miravitlles, C., Font-Altaba, M., Declercq, J. P. & Germain, G. (1973). Cryst. Struct. Commun. 2, 319–321.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLai, Y., Zhang, Y. & Li, Y. (2003). Zhongguo Yaowu Huaxue Zazhi, 13, 99–101.  CAS Google Scholar
First citationLiu, S., Ma, M., Zhou, H., Li, Y. & Han, L. (2006). Acta Cryst. E62, o316–o317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiravitlles, C., Plana, F., Brianso, J. L. & Font-Altaba, M. (1974). Cryst. Struct. Commun. 3, 439–442.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimon, J. G., Jose, C. T., Alexandre, A. F., Rosangela, B. S. & Angelo, C. P. (1997). Tetrahedron Lett. 38, 1501–1504.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds